期刊文献+

结合基元对比度与边界先验的显著性区域检测 被引量:1

Salient region detection based on element contrast and boundary prior
下载PDF
导出
摘要 研究了对完成计算机视觉任务有重要作用的视觉显著性检测,考虑到单纯依靠对比度计算进行显著性检测具有一定的局限性,提出了一种结合基元对比度与边界先验信息的显著性区域检测算法。该算法通过Mean-Shift分割构造图像基元结构,以图像基元为基础,利用图像颜色和亮度两种特征获得基元对比度显著图,再利用图像边界先验条件得到边界显著图;为了突出显著性目标,采用一种新的融合方式将以上检测结果进行融合,最后对显著图像进行多尺度增强操作,以获得更加高质量的显著性图。在国际公开数据集上的实验表明,该算法与现有的较成熟的方法相比,基本符合人眼的主观判断,具有较高的精度召回率。 The visual saliency detection, which plays an important role in completing computer vision and it was found that the detection relying on contrast calculation simply has its limitations, so tection algorithm based on the information of element contrast and boundary prior was proposed tasks, was studies, a salient region de- . Based on the ele- ment obtained by the Mean-Shift partition, the algorithm uses two kinds of characteristics of image color and lumi- nance to get the contrast saliency map. Then receives the boundary saliency map by taking advantage of the image boundary prior condition. It uses a new fusion method to fuse the above results. Lastly, the final saliency map with high quality is got by fusing the preliminary saliency maps of different scales. The results of the experiment on one of the largest publicly available data sets show that this algorithm can quickly extract salient regions consistent with human visual perception, and obtain the higher precision and better recall rate.
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第2期163-170,共8页 Chinese High Technology Letters
基金 国家自然科学基金(4020471) 河北省科技支撑计划(13211801D) 燕山大学博士基金(B540)资助项目
关键词 显著性区域 基元对比度 边界先验 特征融合 多尺度 salient region, element contrast, boundary prior, feature fusion, multi-level
  • 相关文献

参考文献21

  • 1Han J, Ngan K, Li M, et al. Unsupervised extraction of visual attention objects in color images. Circuits and Sys- tems for Video Technology, 2006, 16 ( 1) : 141-145. 被引量:1
  • 2Tilke J, Ehinger K, Dur F, et al. Learning to predict where humans look? In : Proceedings of the IEEE Interna- tional Conference on Computer Vision, 2009:2106-2113. 被引量:1
  • 3Itti L, Koch C, Niebur E. A model of saliency-based vis- ual attention for rapid scene analysis. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11) : 1254-1259. 被引量:1
  • 4Walther D, Itti L, Riesenhuber M, et al. Attentional se- lection for object recognition a gentle way. Lecture Notes in Computer Science, 2002, 2525 ( 1 ) : 472-479. 被引量:1
  • 5Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 2006 MIT Annual Conference on Neural Information Processing Systems, Vancouver, Can- ada, 2006. 545-552. 被引量:1
  • 6Zhai Y, Shah M. Visual attention detection in video se- quences using spatiotemporal cues. In: Proceedings of the 14th Annual ACM International Conference on Multi- media, Santa Barbara, USA, 2006. 815-824. 被引量:1
  • 7Achanta R, Hemami S, Estrada F J, et al. Frequency- tuned salient region detection. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 1597-1604. 被引量:1
  • 8Achanta R, Estrada F, Wils P, et al. Salient region de- tection and segmentation. In: Proceedings of the 6th In- ternational Conference on Computer Vision Systems, Ber- lin, Germany, 2008. 66-75. 被引量:1
  • 9Goferman S, Zelnik-Manor L, Tal A. Context-aware sali- ency detection. In: Proceedings of the 2010 IEEE Confer-ence on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 2376-2383. 被引量:1
  • 10Cheng M M, Zhang G X, Mitra N J, et al. Global con- trast based salient region detection. In. Proceedings of the 2011 IEEE Conference on Computer Vision and Pat- tern Recognition, Colorado Springs, USA, 2011. 409- 416. 被引量:1

同被引文献10

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部