期刊文献+

复杂网络主成分分析的分类方法在音乐家白质可塑性研究中的应用 被引量:1

Classification of Principal Component Analysis on Complex Network and Application for White Matter Plasticity of Musicians
下载PDF
导出
摘要 人脑在多种时间和空间尺度上都是复杂网络,而复杂网络中往往包含着大量的连接信息。主成分分析(PCA)方法主要被用于从大量信息中提取重要特征,因而可以被用于探寻复杂网络中的一些重要信息。众所周知,音乐家是研究训练导致的脑可塑性问题的一个理想模型,探求音乐家脑网络的可塑性变化是非常有意义的。首先通过基于弥散加权成像(DWI)数据的纤维束追踪,构建了16位音乐家与16位非音乐家的脑白质结构网络;然后对两组人的整体脑网络进行了PCA分析,进而对得到的每个主成分做支持向量机(SVM)分类处理,得到分类效果最好的主成分;最终找出对此主成分贡献前1%的连接即为音乐家相对于非音乐家在大脑白质结构网络上发生改变的主要连接。本方法为组间复杂网络对比分析提供了一种基于PCA分类的新思路。基于上述思路,对于音乐家与非音乐家的脑白质结构网络对比分析,表明音乐家在运动、听觉、情绪和记忆等功能脑区表现出更高的脑区间信息传递效率;进而扩展了在网络层面对长期音乐训练改变音乐家白质可塑性问题的理解。 The human brain is a complex network with multiple scales of time and space which includes large amount of connection information.Principal component analysis (PCA) can extract important features from vast quantities of information;therefore,it was used to explore important information from complex network in this study.As is widely known,musicians represent an ideal model to investigate experience-driven plasticity changes in the human brain.It is a far more significant research that explores plasticity changes in brain networks of musicians.In this study,white matter brain networks of 16 musicians and 16 non-musicians were firstly constructed by fiber tracking based on diffusion-weighted imaging (DWI);secondly,PCA process was used to extract the feature networks of two the groups,support vector machine (SVM) classification method was then applied to each component,the component with best classification performance was obtained;finally,the first 1% connections with highest contribution to the component were considered to be the main connections which may represent the changes in the musicians' white matter anatomical networks compared to non-musicians.This method provides a new approach which utilizes the PCA based classification for complex network comparison issues.And,comparison analysis of the white matter anatomical brain network between musicians and non-musicians indicated that musicians showed enhanced information transfer efficient between motor-,auditory-,emotional-,and memory-related brain regions.These findings may extend the network level understanding of white matter plasticity in musicians who have had long-term musical training.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2015年第2期184-189,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(91232725 81201159) 中央高校基本科研业务费项目(ZYGX 2011J097)
关键词 主成分分析(PCA) 支持向量机(SVM) 弥散加权成像(DWI) 脑网络 principal component analysis (PCA) support vector machine (SVM) diffusion-weighted imaging (DWI) brain network
  • 相关文献

参考文献19

  • 1Sporns 0, Chialvo DR, Kaiser M, et al. Organization, development and function of complex brain networks [J]. Trends Cogn Sci, 2004, 8(9): 418 -425. 被引量:1
  • 2Li Jianfu , Luo Cheng, Peng Yueheng, et al. Probabilistic diffusion tractography reveals improvement of structural network in musicians [J]. PLoS ONE, 2014, 9(8): el05508. 被引量:1
  • 3Jolliffe 1. Principal component analysis [M]. Hoboken: Wiley Online Library, 2005. 被引量:1
  • 4M unte TF, Altenmuller EL. The musician's brain as a model of neuroplasticity [J]. Nature Reviews Neuroscience, 2002, 3 (6) : 473 - 477. 被引量:1
  • 5Meister I, Krings T, Foltys H, et al. Effects of long-term practice and task complexity in musicians and nonmusicians performing simple and complex motor tasks: implications for cortical motor organization [J]. Hum Brain Mapp, 2005, 25 (3):345-352. 被引量:1
  • 6Huang Z, Zbang JX, Yang Z, et ol. Verbal memory retrieval engages visual cortex in musicians [J]. Neuroscience, 2010, 168(1): 179 -189. 被引量:1
  • 7Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians [J]. J Neurosci, 2003, 23 (27) : 9240 - 9245. 被引量:1
  • 8Keenan JP, Thangaraj V, Halpern AR, et al. Absolute pitch and planum temporale [J]. Neurolmage, 2001, 14 (6): 1402 - 1408. 被引量:1
  • 9Schmithorst VJ, Wilke M. Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study [J]. Neuroscience Letters, 2002, 321 ( 1 ) : 57 -60. 被引量:1
  • 10Imfeld A, Oechslin MS, Meyer M, et al. White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study [J]. N eurolmage, 2009, 46 ( 3) : 600 - 607 . 被引量:1

二级参考文献21

  • 1Wang L Zang Y He Y Liang M Zhang X Tian L Wu T Jiang T Li K.Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI[J].中国生物学文摘,2006,20(10):1-1. 被引量:85
  • 2Crick F,Jones E.Backwardness of human neuroanatomy[J].Nature,1993,361:109-110. 被引量:1
  • 3Lehrer J.Neuroscience:making connections[J].Nature,2009,457:524-527. 被引量:1
  • 4NIH launches the human connectome project to unravel the brain connections[EB/OL].http://www.nih.gov/news/health/jul2009/ninds-15.htm,2009-07-13/2010-12-20. 被引量:1
  • 5Laufs H,Daunizeau J,Carmichael DW,et al.Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging[J].Neuroimage,2008,40:515-528. 被引量:1
  • 6Valdes-Sosa PA,Sanchez-Bornot JM,Sotero RC,et al.Model driven EEG/fMRI fusion of brain oscillations[J].Hum Brain Mapp,2009,30:2701-2721. 被引量:1
  • 7Lei Xu,Xu Peng,Luo Cheng,et al.fMRI functional networks for EEG source imaging[J].Human Brain Mapping(in press),DOI:10.1002/hbm.21098. 被引量:1
  • 8Goldman RI,Stern JM,Engel J Jr,et al.Simultaneous EEG and fMRI of the alpha rhythm[J].Neuroreport,2002,13:2487-2492. 被引量:1
  • 9Qin Yun,Xu Pang,Yao Dezhong.A comparative study of different references for EEG default mode network:The use of the infinity reference[J].Clinical Neurophysiology,2010,121:1981-1991. 被引量:1
  • 10Raichle,M.The brain's dark energy[J].Scientific American Magazine,2010,302(3):44-49. 被引量:1

共引文献55

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部