期刊文献+

冷却速率对Sn-3.5Ag合金微观组织及力学性能的影响 被引量:2

Effects of Cooling Rate on Microstructure and Mechanical Behavior of Sn-3.5Ag Alloy
原文传递
导出
摘要 研究了不同冷却速率对Sn-3.5Ag合金的微观组织、维氏硬度和力学性能的影响。通过采用空冷、水冷和急冷的方式获得了冷却速率分别为101、103和106 K/s的Sn-3.5Ag合金样品,对样品进行显微分析和力学性能测试后得出冷却速率对β-Sn二次枝晶臂间距和Ag3Sn相的分布有显著影响。随冷却速率的加快,β-Sn晶粒尺寸和二次枝晶臂间距逐渐减小,Ag3Sn晶粒尺寸也逐渐变小、分布更加均匀,样品硬度、力学性能也随冷却速率的增加而提高。研究结果表明,合金微观组织结构和Ag3Sn相的分布规律对合金力学性能有显著的影响,Ag3Sn相在合金中起了弥散强化的作用。 The microstructure, micro-hardness and tensile behavior of bulk Sn-3.5Ag alloy were studied as a function of cooling rate. Sn-3.5Ag alloy samples with the controlled cooling rates of 10^1, 10^3 and 10^6 K/S of were obtained by cooling specimens in different media: air, water and rush cold. The microscopic analysis and mechanical properties test were conducted. Results show that the cooling rat has a significant effect on the secondary dendrite size and distribution of β-Sn phase. The β-Sn grain average size and the secondary dendrite arm space are gradually reduced with the increase of cooling rate, Ag3Sn grain also become smaller, and distribute more uniformly. Besides, the micro-hardness and tensile properties with increasing cooling rate improve. Finally, it is concluded that the microstructure and the distribution of Ag3Sn grains influence obviously the mechanical properties, and Ag3Sn grains play a dispersion strengthened role in the alloy.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第4期1012-1016,共5页 Rare Metal Materials and Engineering
基金 云南省重点基金(2011FA026) 云南省创新团队(2012HC027) 云南省科技合作专项(2012IB002)
关键词 快速冷却 Sn-3.5Ag合金 显微组织 力学性能 rapid cooling Sn-3.5Ag alloy microstructure mechanical properties
  • 相关文献

参考文献18

  • 1张曙光,何礼君,张少明,石力开.绿色无铅电子焊料的研究与应用进展[J].材料导报,2004,18(6):72-75. 被引量:46
  • 2Yu S P, Lin H J, Hon M H et al. JMater Sci MaterElectron[J], 2000, 11:461. 被引量:1
  • 3Islam R A, Chart Y C, Jillek Wet aL Microelectron J[J], 2006, 37(8): 705. 被引量:1
  • 4KatsuakiSuganuma(克明菅沼).ESPEC技术报告[C].Japan:ESPEC,2003. 被引量:1
  • 5Song J M, Lin J J, Huang C F et al. Mater Sci Eng A Struct Mater[J], 2007, 466(1-2): 9. 被引量:1
  • 6Mineo N, Masao S, Yutaka T. J Fatigue[J], 2008, 30(10-11): 1729. 被引量:1
  • 7ChenWenxue(陈文学),XueSongbai(薛松柏),WangHui(王慧)eta1.稀有金属材料与工程[J],2010,39(10):1702. 被引量:1
  • 8YangLei(杨磊),JieXiaohua(揭晓华),GuoLi(郭黎).电子元件与材料[J],2010,29(8):66. 被引量:1
  • 9Gao F, Takemoto T. Mater Lett[J], 2006, 60:2315. 被引量:1
  • 10CuiZhongqi(崔忠圻).金属学与热处理[M].Beijing:China Machine Press,1989. 被引量:1

二级参考文献34

  • 1Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE)and on restriction of the use of certain hazardous substances in electrical and electric waste (R.Hs). Official Journa 被引量:1
  • 2US5527628. 1993.7 被引量:1
  • 3Japan 3152945,USA 6180055 被引量:1
  • 4Katsuaki Suganuma. The current status of lead-free soldering. ESPEC Technology Report, 2003.13 被引量:1
  • 52nd EU lead-free soldering technology roadmap and framework for an international lead-free soldering roadmap. Soldertec at Tin Technology,2003.2 被引量:1
  • 6JP5050289.1993.3 被引量:1
  • 7Ning-Cheng Lee. Lead-free soldering of chip-scale packages. Chip Scale Review, 2000, (3-4): 42 被引量:1
  • 8顾丕谟.无铅焊料研发及应用[A]..2002北京国际SMT技术交流会论文集[C].北京,2002,5.. 被引量:1
  • 9Park M S, Arr6yave R. Computational Materials Science[J],2011,50:1692. 被引量:1
  • 10Chen J, Shen J, Lai S Q et al. JAlloys Compd[J], 2010, 489: 631. 被引量:1

共引文献51

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部