期刊文献+

基于直接评分与间接评分的协同过滤算法 被引量:1

Collaborative filtering algorithm based on direct and indirect ratings
下载PDF
导出
摘要 协同过滤面临着用户评分数据极为稀疏的问题,为改善不同稀疏程度数据上的推荐效果,提出基于直接评分与间接评分的协同过滤算法。针对直接评分,定义加权用户相似性和加权项目相似性度量标准,构造直接推荐用户集合与直接推荐项目集合,给出直接评分权重的计算方法;针对间接评分,构造相似评分集合,定义评分相似性度量标准。定义综合评分权重,在直接评分与间接评分的基础上得到最终推荐结果。大量实验结果表明,该算法在不同稀疏程度的数据上均具有较高的推荐质量。 Existing collaborative filtering algorithms face challenge of extremely sparse users ’rating data.To improve the recommendation effects on datasets with different sparse levels,a collaborative filtering algorithm based on both direct rating and indirect rating was proposed.For direct rating,weighted user similarity and weighted item similarity were defined, direct recommendation user set and direct recommendation item set were constructed, and computation method of direct rating weight was presented.For indirect rating,similar rating set was constructed,and rating similarity was defined.Further-more,comprehensive rating weight was defined,which was used for producing the final recommendation results.Extensive ex-perimental results show that the proposed algorithm can achieve high recommendation quality on datasets with different sparse levels.
作者 宋威 陈利娟
出处 《计算机工程与设计》 北大核心 2015年第5期1228-1232,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61105045) 北方工业大学科研人才提升计划基金项目(CCXZ201303)
关键词 推荐系统 协同过滤 直接评分 间接评分 综合评分 recommender system collaborative filtering direct rating indirect rating comprehensive rating
  • 相关文献

参考文献12

  • 1Gedikli F. Recommender systems and the social Web: Levera- ging tagging data for recommender systems [M]. Wiesbaden: Springer Vieweg, 2013. 被引量:1
  • 2黄立威,李德毅.社交媒体中的信息推荐[J].智能系统学报,2012,7(1):1-8. 被引量:16
  • 3Davoodi E, Kianmehr K, Afsharchi M. A semantic social net- work-based expert recommender system [J]. Applied Intelli- gence, 2013, 39 (1)I 1-13. 被引量:1
  • 4Cai Y, Leung HF, Li Q, et al. Typicality-based collaborative filtering recommendation [J].IEEE Transactions on Know- ledge and Data Engineering, 2014, 26 (3):766-779. 被引量:1
  • 5吴月萍,郑建国.协同过滤推荐算法[J].计算机工程与设计,2011,32(9):3019-3021. 被引量:24
  • 6Mu X, Chen Y, Yang J, et al. An improved similarity algo- rithm based on hesitation degree for user-based collaborative fil- tering [C] //Proceedings of the 5th International Symposium on Advances in Computation and Intelligence, 2010: 261-271. 被引量:1
  • 7Li Y, Zhai CX, Chen Y. Exploiting rich user information for one-class collaborative filtering [J]. Knowledge and Informa- tion Systems, 2014, 38 (2): 277-301. 被引量:1
  • 8Wang W, Yang J, He L. An improved collaborative filtering based on item similarity modified and common ratings[C] // Proceedings of the International Conference on Cyberworlds, 2012: 231-235. 被引量:1
  • 9于洪,孟令民.考虑项目依赖不对称性的协同过滤推荐方法[J].计算机工程与设计,2013,34(1):298-302. 被引量:3
  • 10Yamashita A, Kawamura H, Suzuki K. Adaptive fusion method for user-based and item-based collaborative filtering [J]. Advances in Complex Systems, 2011, 14 (2): 133-149. 被引量:1

二级参考文献65

  • 1彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 2Bell R M,Koren Y. Improved neighborhood-based collaborative filtering[A].Los Angeles,California,USA,2007.7-14. 被引量:1
  • 3Koren Y. Factor in the Neighbors:Scalable and accurate collaborative filtering[J].ACM Transactions on Knowledge Discovery from Data,2009,(01):1-24. 被引量:1
  • 4Ma H,King I,Lyu M R. Learning to recommend with social trust ensemble[A].2009.203-210. 被引量:1
  • 5Guo Yanhong;Cheng Xuefen;Dong Dahai.An improved collaborative filtering algorithm based on trust in E-commerce recommendation systems[A]湖北武汉,20101-4. 被引量:1
  • 6Chowdhury M,Thomo A,Wadge WW. Trust-based infinitesimals for enhanced collaborative filtering[A].2009. 被引量:1
  • 7ROSA C D,HAVENS J C A,HAWK J. Sharing,privacy and trust in our networked world[OL].http://www.oclc.org/reports/sharing/default.htm,2012. 被引量:1
  • 8LIU Yuchao,ZHANG Haisu,MA Yutao. Collective intelligence and uncertain knowledge representation in cloud computing[J].China Communications,2011,(06):58-66. 被引量:1
  • 9RICCI F,ROKACH L,SHAPIRA B. Introduction to recommender systems handbook[A].New York,USA:Springer-Verlag,2011.1-35. 被引量:1
  • 10ADOMAVICIUS G,TUZHILIN A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,(06):734-749.doi:10.1109/TKDE.2005.99. 被引量:1

共引文献39

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部