期刊文献+

基于光谱空间结合的非负稀疏保持嵌入的谱聚类 被引量:1

Spectral clustering algorithm based on hybrid of spectral and spatial information and non-negative sparse preserving embedding
下载PDF
导出
摘要 为了解决高光谱遥感影像的特征融合问题,针对高光谱数据的维数高、信息量繁杂冗余、非线性而且数据量庞大特点,利用图谱理论非负稀疏保持嵌入的降维方法,提出基于光谱空间结合的非负稀疏保持嵌入的谱聚类进行样本的标记算法,有效地利用空间信息和原有光谱信息,提高分类的精度。该算法在引入非负稀疏表示的同时,利用样本的光谱与空间相关信息构建Laplacian图,嵌入投影到低维的子空间,然后再用经典的K均值聚类算法进行分类。算法能够有效保持样本的几何稀疏结构,而且光谱空间信息的结合使得图像的边界像素点得到了更好的分类。 To solve the characteristic fusion of hyperspectral remote sensing images, i. e. , using the .dimensional reduction method of non-negative sparse preserving embedding, this paper proposed spectral clustering algorithm based on the hybrid of spectral and spatial information and non-negative sparse preserving embedding for efficiently improve the classification accuracy with the spatial information and the original spectral information. This algorithm embedded the projection into low-dimensional subspace. After that it classified with the K-means clustering algorithm. The proposed algorithm can effectively maintain the geometry sparse structure of samples and make the boundary pixels of the image have excellent classification using the hybrid of the spectral and spatial information.
出处 《计算机应用研究》 CSCD 北大核心 2015年第6期1917-1920,共4页 Application Research of Computers
基金 航空科学基金资助项目(201210P8003)
关键词 非负稀疏 降维 谱聚类 高光谱图像 拉普拉斯 non-negative sparse dimensionality reduction spectral clustering hyperspectral remote sensing image Laplacian
  • 相关文献

参考文献21

  • 1高阳,王雪松,程玉虎.基于非负稀疏图的高光谱数据降维[J].电子与信息学报,2013,35(5):1177-1184. 被引量:7
  • 2Balakrishnama S,Ganapathiraju A.Linear discriminant analysis:a brief tutorial[EB/OL].1998.http://www.music.mcgill.ca/-ich/classes/mumt611_05/classifiers/lda_theory.pdf. 被引量:1
  • 3Banos T V,Bruzzone L,Camps-Valls G.Classification of hyperspectral datas with regularized linear discriminant analysis[J].IEEE Trans on Geoscience and Remote Sensing,2009,47(3):862-873. 被引量:1
  • 4Yi B L,Li W W,Du J.Classification of hyperspectral data based on principal component analysis[J].Information an International Interdisciplinary Journal,2012,15(9):3771-3777. 被引量:1
  • 5Chen T,Hsu Y J,Liu Xiaoming,et al.Principle component analysis and its variants for biometrics[C]//Proc of IEEE International Conference on Image Processing.2002. 被引量:1
  • 6Chen Yenwei,Han Xianhua.Classification of high-resolution satellite images using supervised locality preserving projections[J].Lecture Notes in Computer Science,2008,5178(1):149-156. 被引量:1
  • 7He Xiaofei,Niyogi P.Locality preserving projections[C]//Proc of Neural Information Processing System.2003. 被引量:1
  • 8Cox T F,Cox M A.Multidimensional scaling[M].London:Chapman & Hall,1994. 被引量:1
  • 9曾江源.ISODATA算法的原理与实现[J].科技广场,2009(7):126-127. 被引量:11
  • 10Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1

二级参考文献43

  • 1李元萍,李元良.MATLAB编程实现ISODATA算法[J].矿业研究与开发,2005,25(3):79-80. 被引量:7
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3Seung H, Lee D. The manifold ways of perception [J]. Science, 2000, 290(5500) : 2268 - 2269. 被引量:1
  • 4Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 - 2326. 被引量:1
  • 5Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319- 2323. 被引量:1
  • 6Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373- 1396. 被引量:1
  • 7He X, Niyogi P. Locality preserving projections [C] // Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 153- 160. 被引量:1
  • 8Chang Y, Hu C, Turk M. Manifold of facial expression [C] // Proc IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003:28 - 35. 被引量:1
  • 9Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding [C]// NIPS, Vancouver, British Columbia, Canada, 2001 : 1255 - 1262. 被引量:1
  • 10Kanade T, Cohn J, Tian Y. Comprehensive database for facial expression analysis [C] // IEEE Proc the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2000:46 - 53. 被引量:1

共引文献120

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部