期刊文献+

基于边缘分类能力的动态集成选择算法 被引量:1

Dynamic ensemble selection based on classifier competence of margin
下载PDF
导出
摘要 提出了一种新的基于边缘分类能力排序准则,用于基于排序聚集(ordered aggregation,OA)的分类器选择算法。为了表征分类器的分类能力,使用随机参考分类器对原分类器进行模拟,从而获得分类能力的概率模型。为了提高分类器集成性能,将提出的基于边缘分类能力的排序准则与动态集成选择算法相结合,首先将特征空间划分成不同能力的区域,然后在每个划分内构造最优的分类器集成,最后使用动态集成选择算法对未知样本进行分类。在UCI数据集上进行的实验表明,对比现有的排序准则,边缘分类能力的排序准则效果更好,进一步实验表明,基于边缘分类能力的动态集成选择算法较现有分类器集成算法具有分类正确率更高、集成规模更小、分类时间更短的优势。 This paper proposed a new ordering criterion which could be used by classifiers selection algorithm based on or- dered aggregation. For calculating the competence of the classifier, it used a randomized reference classifier for modeling the classifier to get the probabilistic model of classifier competence. By combining with ordering criterion based on classifier com- petence of margin, the paper proposed a novel dynamic ensemble selection algorithm (CCM-DES) for improving the perform- ance of the ensemble. CCM-DES first divided feature space into different regions, and then constructed optimal ensembles in every region. It used DES for classify the unlabeled sample at last. Experiments on UCI datasets show that the criterion based on margin classifiers competence is better than current ordering criterion. Furthermore, CCM-DES has the advantages of smal- ler ensembles, higher accuracy, shorter classifying time than current ensemble algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第6期1698-1702,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61004069) 安徽省自然科学基金资助项目(1208085QF107)
关键词 动态集成选择 排序聚类 分类器能力 BAGGING dynamic ensemble selection ordered aggregation classifier competence bagging
  • 相关文献

参考文献14

  • 1Zhou Zhihua,Wu Jianxin,Tang Wei.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137(1):239-263. 被引量:1
  • 2张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139
  • 3Li Nan,Yu Yang,Zhou Zhihua.Diversity regularized ensemble pruning[C]//Proc of European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin:Springer,2012:330-345. 被引量:1
  • 4Martinez-Muoz G,Hernndez-Lobato D,Surez A.An analysis of ensemble pruning techniques based on ordered aggregation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2):245-259. 被引量:1
  • 5Zhang Yi,Burer S,Street W N.Ensemble pruning via semi-definite programming[J].The Journal of Machine Learning Research,2006,7:1315-1338. 被引量:1
  • 6Ko A H R,Sabourin R,Jr Britto A S.From dynamic classifier selection to dynamic ensemble selection[J].Pattern Recognition,2008,41(5):1718-1731. 被引量:1
  • 7Martínez-mun-oz G,Surez A.Using boosting to prune bagging ensembles[J].Pattern Recognition Letters,2007,28(1):156-165. 被引量:1
  • 8Martínez-Mun-oz G,Surez A.Pruning in ordered bagging ensembles[C]//Proc of the 23rd International Conference on Machine Learning.New York:ACM Press,2006:609-616. 被引量:1
  • 9Woloszynski T,Kurzynski M.A probabilistic model of classifier competence for dynamic ensemble selection[J].Pattern Recognition,2011,44(10):2656-2668. 被引量:1
  • 10Guo L,Boukir S.Margin-based ordered aggregation for ensemble pruning[J].Pattern Recognition Letters,2013,34(6):603-609. 被引量:1

二级参考文献78

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284. 被引量:1
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483. 被引量:1
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329. 被引量:1
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338. 被引量:1
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013. 被引量:1
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162. 被引量:1
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303. 被引量:1
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121. 被引量:1
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106. 被引量:1

共引文献138

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部