期刊文献+

混合动力汽车下坡辅助电-液复合制动控制方法 被引量:6

Electro-hydraulic brake control method for hybrid electric vehicle during process of downhill assist control
下载PDF
导出
摘要 为提高混合动力汽车下坡辅助控制中电、液复合制动的综合性能,该文提出一种综合考虑整车安全及经济性的电、液复合制动控制方法。通过对混合动力汽车下坡辅助制动转矩变化过程及各辅助制动系统特性的分析,拟定了以安全性为基础、以经济性为目标的下坡辅助制动转矩分配原则,利用前馈加反馈的控制方法制定了电机辅助制动系统及液压辅助制动系统的转矩协调控制策略。并通过仿真及试验平台对以上算法进行了验证,结果表明该方法可以有效地减小液压系统启动延时,保证了液压辅助制动系统的响应速度及下坡辅助系统整体的响应精度。该研究提高了整车控制的安全性和经济性,也为电动车辆复合制动进一步研究提供了思路。 In order to improve vehicle safety and fuel economy of the whole control system for hybrid electric vehicles (HEV), this paper presents an electro-hydraulic braking control method for the downhill auxiliary braking process. First, through the analysis of the downhill auxiliary braking process and dynamic change of the braking torque, the appropriate time for electro-hydraulic braking and the distribution principle of the braking torque are proposed. Experiment platform and typical control signals are adopted to test the electronic vacuum brake, of which the results illustrate that the braking torque of the electronic vacuum brake is sufficiently large to finish the braking process. However, if the target pressure is low (for example, below 0.15 MPa), the respond of electronic vacuum brake to the pressure is also slow. Increasing target pressure can slove the problem of start-up delay and the response time of the brake. Besides, response errors appearing in the control process of the electronic vacuum brake cannot be eliminated as well. On the contrary, the drive motor has high response speed and high control precision though the maximum driving/braking torque is limited. This provides the possibility of combining the advantages of both devices. Thus, based on the response data of electric vehicle drive motor, the complementarity of braking capacity and response characteristics of the electro-hydraulic system is specifically analyzed and the control inclination of the electro-hydraulic system is obtained. Then, the distribution principle of the downhill auxiliary braking torque is established, which can maximize the breaking torque of the motor in the prerequisite of assuring the total breaking torque. Based on the blending control framework of forward feed and feedback, the hydraulic system response under low pressure is realized using the proposed minimum pressure maintaining method. Meanwhile, by increasing the objective start-up pressure, time delay of the hydraulic system is controlled within the obje
出处 《农业工程学报》 EI CAS CSCD 北大核心 2015年第8期112-118,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家973项目(2011CB711204)
关键词 车辆 控制系统 计算机仿真 下坡辅助制动 电子真空制动 电机制动 协调控制 vehicles control systems computer simulation downhill assist brake electronic vacuum brake motor braking coordination control
  • 相关文献

参考文献14

二级参考文献51

共引文献53

同被引文献54

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部