期刊文献+

基于改进蚁群算法的QoS约束云任务调度

Cloud Task Scheduling with Qo S Constraint Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 在研究现有云环境下独立任务和工作流任务调度模型的基础上,提出一种满足Qo S约束的部分相关任务调度模型,并改进蚁群算法为每个子群选择信息素更新方法,通过小范围局部优化从而获得整体最优解。Cloud Sim仿真结果表明,该调度模型具有较高的收敛性和寻优能力,适用于云环境下任务调度。 Based on the study of independent tasks and workflow scheduling model in existing cloud environment, a partial dependence task scheduling model with QoS constraints is proposed in this paper. At the same time, ant colony algorithm is improved to select pheromone update method for each sub-group and small-scale local optimization is conducted to obtain the overall optimal solution. CloudSim simulation result shows that the scheduling model has higher convergence and optimization capability for the task scheduling in cloud environment.
作者 丁智
机构地区 扬州职业大学
出处 《扬州职业大学学报》 2014年第4期34-37,共4页 Journal of Yangzhou Polytechnic College
关键词 蚁群算法 任务调度 QOS 云计算 ant colony algorithm task scheduling QoS (quality of service) cloud computing
  • 相关文献

参考文献10

  • 1ZHANG Z, ZHANG X. A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation [ C ]//Proceedings of the 2nd International Conference on Industrial Mecha- tronics and Automation. Piscataway: IEEE, 2010. 被引量:1
  • 2ZHU L, LI Q, HE L. Study on cloud computing re- source scheduling strategy based on the ant colony op- timization algorithm[ J]. IJCSI International Journal of Computer Science Issues, 2012,9 (5) :54 - 58. 被引量:1
  • 3NISHANT K, SHARMA P, KRISHNA V, et al. Load balancing of nodes in cloud using ant colony optimiza- tion [ C ]//Computer Modelling and Simulation, 2012 UKSim 14th International Conference on. IEEE,2012. 被引量:1
  • 4YAN HUA Z, LEI F, ZHI Y. Optimization of cloud database route scheduling based on combination of ge- netic algorithm and ant colony algorithm[J]. Procedia Engineering, 2011 ( 15 ) :3341 - 3345. 被引量:1
  • 5MISHRA R, JAISWAL A. Ant colony optimization: A solution of load balancing in cloud [ J]. International Journal of Web & Semantic Technology, 2012,3 (2) : 33 - 50. 被引量:1
  • 6LIU X, CHEN J, WU Z, et al. Handling recoverable temporal violations in scientific workflow systems: a workflow rescheduling based strategy [ C ]//Proceed- ings of the 2010 10th IEEE/ACM International Confer- ence on Cluster, Cloud and Grid Computing. IEEE Computer Society, 2010. 被引量:1
  • 7LIU H, XU D, Miao H K. Ant colony optimization based service flow scheduling with various QoS re- quirements in cloud computing [ C ]//Software and Network Engineering, 2011 First ACIS International Symposium on. IEEE, 2011. 被引量:1
  • 8CHIMAKURTHI L. Power efficient resource allocation for clouds using ant colony framework [ J/OL ]. arXiv preprint arXiv : 1102. 2608,2011. 被引量:1
  • 9ENDO P T, DE ALMEIDA PALHARES A V, PEREI- RA N N, et al. Resource allocation for distributed cloud: concepts and research challenges [ J]. IEEE, 2011,25(4) :42 -46. 被引量:1
  • 10CALHEIROS R N, RAN JAN R, BELOGLAZOV A, et al. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of re- source provisioning algorithms [ J ]. Software : Practice and Experience, 2011,41 ( 1 ) :23 - 50. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部