期刊文献+

基于主成分分析与支持向量机的汽柴油需求预测 被引量:5

Application of Support Vector Machines Based on Principal Component Analysis in Gasoline and Diesel Demand Prediction
下载PDF
导出
摘要 综合分析了影响汽柴油消费需求的关键因素,并针对其具有自相关性、复杂性、数据量大等特点,采用主成分分析法对样本数据进行降维处理,形成新的样本集。对支持向量机预测模型进行改进,在其基础之上引入时序动态因子,将上年的汽柴油需求历史数据作为时序反馈因子引入模型,从而形成新的动态反馈拟合模型,建立相应的需求预测模型。对1996~2012年的汽柴油需求预测进行实例研究,并将本文中所提方法的预测结果与灰色GM(1,1)模型、BP神经网络模型进行对比分析。结果表明本文中的主成分分析与改进支持向量机预测方法相对于GM(1,1)模型其预测误差均值分别降低了72.7%和74.86%,相对于BP神经网络其预测误差均值分别降低了81.3%和81.66%,从而证明了此方法的有效性和优越性。 Firstly, a comprehensive analysis of the key factors affecting consumer demand for gasoline and diesel is made for self-relevance, complexity and data volume, etc. A principal component analysis is made to reduce the dimension of the sample data, and a new set of samples is formed. Then, by improving the support vector machine model and introducing a dynamic factor in the timing of its foundation, and the demand for gasoline and diesel last year historical data into the model as the timing of the feedback factor, thus forming a new dynamic feedback fitting model, an appropriate demand forecasting model is estab- lished. Finally, a case study is made on forecasting demand for gasoline and diesel in the 1996 -2012, and the proposed method of predicting and gray GM ( 1,1 ) model, and BP neural network model are ana- lyzed. The results show that the improved prediction method relative to the GM support vector machine principal component analysis ( 1,1 ) model of the prediction errors are respectively 72.7% , 74.86% low- er, and that comparing with the BP neural network, the prediction errors are reduced on average by 81. 3% ,81.66%. Results show that the principal component analysis using improved support vector machine method is superior to existing methods, which proves the effectiveness and superiority of this method.
出处 《工业工程》 2015年第2期20-27,50,共9页 Industrial Engineering Journal
基金 国家自然科学基金资助项目(51375004) 教育部人文社会科学研究规划基金资助项目(14YJA630079) 湖北汽车工业学院博士科研基金资助项目(BK201408)
关键词 汽柴油需求 预测 主成分分析 支持向量机 gasoline and diesel demand prediction principal component analysis support vector machines
  • 相关文献

参考文献19

  • 1卢红,李振宇,李雪静,朱庆云.我国汽柴油消费现状及中长期预测[J].中外能源,2014,19(1):18-24. 被引量:19
  • 2Inglesi R. Aggregate electricity demand in South Africa: conditional forecasts to 2030[ J ]. Applied Energy,2010,87 ( 1 ) : 197-204. 被引量:1
  • 3Celiktas M S, Kocar G. From potential forecast to foresight of Turkey' s renewable energy with Delphi approach [ J ]. Energy,2010,35 (5) : 1973-1980. 被引量:1
  • 4Suganthi L, Samuel A A. Energy models for demand forecas- ting -a review [ J]. Renewable and Sustainable Energy Re- views ,2012,16 ( 2 ) : 1223-1240. 被引量:1
  • 5Huang Y, Bor Y J, Peng C Y. The long -term forecast of Tai- wan' s energy supply and demand: LEAP model application [ J]. Energy Policy, 2011,39 ( 11 ) : 6790-6803. 被引量:1
  • 6Ediger V S, Akar S. ARIMA forecasting of primary energy demand by fuel in Turkey [ J ]. Energy Policy,2007,35 ( 3 ) :1701-1708. 被引量:1
  • 7Yu S,Wei Y M,Wang K. China' s primary energy demands in 2020: predictions from an MPSO -RBF estimation model [ J ]. Energy Conversion and Management, 2012,61 : 59-66. 被引量:1
  • 8Kumar U ,Jain V K. Time series models (Grey-markov, grey model with rolling mechanism and singular spectrum analy- sis) toforecast energy consumption in India[ J]. Energy, 2010,35 (4) : 1709-1716. 被引量:1
  • 9张跃军,周彬,王丽.基于支持向量机模型的北京市能源需求预测研究[J].北京理工大学学报(社会科学版),2013,15(3):8-12. 被引量:7
  • 10江敏.基于主成分分析和支持向量机相结合的天然气消费量预测[J].科技通报,2013,29(12):42-44. 被引量:9

二级参考文献92

共引文献147

同被引文献65

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部