期刊文献+

微型抗磁悬浮振动能量采集器输出特性分析 被引量:2

Output Performance Analysis of Micro-vibration Energy Harvester Based on Diamagnetic Levitation
下载PDF
导出
摘要 针对目前研究的电磁式振动能量采集器都工作在较高频率的情况,文中研究了一种采集低频环境下振动的抗磁悬浮振动能量采集器。通过Ansoft Maxwell的仿真分析,得到悬浮永磁体周围磁感应强度B的变化规律,确定了感应线圈合理的分布位置,理论分析得到感应线圈匝数及导线横截面半径的最优尺寸。当热解石墨距离悬浮永磁体的位置不同时,系统对外界的频率响应不相同。仿真分析结果表明:当系统受到外界的加速度为6.25 m/s^2,频率输入为2~12 Hz,线圈产生最大感应电动势145 m V,最大输出功率为19.7μW。 Aiming at electromagnetic vibration energy harvester at present working at higher frequency, this paper presented a energy harvester? based on diamagnetic levitation,which can absorb low-frequency vibration. By Ansoft Maxwell, the change of the magnetic induction intensity B of the floating magnet was analyzed.Then, the position, the appropriate number of turns and the radi- us of its cross section of the induction coils were obtained by the theory analysis.When the distance between the pyrolytic graphite and the floating magnet changed, the response frequency of the system varied correspondingly.The simulation results show that when the acceleration of the system is set to 6.25 m/s^2 and the input frequency is of is 2~ 12 Hz,the maximum output voltage and output power of the model are145 mV and 19.7 μW respectively.
出处 《仪表技术与传感器》 CSCD 北大核心 2015年第4期46-48,83,共4页 Instrument Technique and Sensor
基金 中国博士后科学基金资助项目(2012M521404) 河南省教育厅青年骨干教师资助项目(2012GGJS-003) 河南省教育厅自然科学基金(13A460725)
关键词 抗磁悬浮 能量采集 频率 结构优化 电压 功率 diamagnetic levitation energy harvester frequency structure optimization voltage power
  • 相关文献

参考文献4

二级参考文献85

  • 1BEEBY S P, TUDOR M J, WHITE N M. Review article: energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 2006 (17) : 175 -195. 被引量:1
  • 2ROUNDY S, WRIGHT P K, RABAEY J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003, 26 (11): 1131 - 1144. 被引量:1
  • 3RYU J J, CARAZO A V, UCHINO K, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Japanese Journal of Applied Physics, 2001,40 (8) : 4948 -4951. 被引量:1
  • 4DONGS X, LI J F, VIEHLAND D. Longitudinal and transverse magnetoelectric vohage coefficients of magnetostrictive/piezoelectric laminate composite: theory. Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50 (10) : 1253 - 1261. 被引量:1
  • 5HUANG J K, O'HANDLEY R C, BONO D. New, high-sensitivity, hybrid magnetostrictive/electroactive magnetic field Sensors. Smart Structures and Materials: Smart Sensor Technology and Measurement Systems, 2003, 5050 : 229 - 237. 被引量:1
  • 6BAYRASHEV A, ROBBINS W P, ZIAIE B. Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate eomposltes. Sensors and Actuators A, Physical, 2004, 114 ( 2 3 ) : 244 - 249. 被引量:1
  • 7ZHENG X J, SUN L. A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials. Journal of Applied Physics, 2006, 100 (6): 1-6. 被引量:1
  • 8Priya S, Inman D J. Energy Harvesting Technologies [ M]. New York : Springer Publishing Company, Incorporated, 2009. 被引量:1
  • 9Mateu L, Moll F. Review of energy harvesting techniques and applications for microelectronics [ J ]. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5837 : 359-373. 被引量:1
  • 10Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes [ J ]. Computer Communications, 2003, 26 ( 11 ) : 1131-1144. 被引量:1

共引文献32

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部