期刊文献+

逻辑公式的模糊度

Fuzzy Degree of Logical Formula
下载PDF
导出
摘要 从判断一个命题正确与否的难易程度入手,在经典的二值逻辑系统中,利用一个命题公式赋值为1与赋值为0的个数,引入了一个反映命题公式清晰程度的量——模糊度。给出了模糊度的相关性质,指出了模糊度与计量逻辑学中真度定义之间的联系与区别,得到如下结论:(1)在一个推理中过程中,随着前提模糊度的降低,结论的模糊度也随之降低;(2)具有相同模糊度的命题公式构成的命题集是一个不相容命题集;(3)两个距离相近的命题公式,其模糊度也十分接近。 From the view whether it is easy to judge a formula correctly or not, this paper proposes the concept of fuzzy degree of a given formula in classical two-valued logic, which uses the numbers of a propositional logic assign-ment 1 and 0. This paper gives the related properties of fuzzy degree, and points out the connections and differences between fuzzy degree and the definition of truth degree in quantitative logic. The following conclusions are got:(1) In a reasoning process, with the lower of the fuzzy degree of premise, the fuzzy degree of conclusion is also lower;(2) The set which constitutes of the same fuzzy degree proposition formulas is inconsistent; (3) If the distance of two formulas is closer, the fuzzy degree of two formulas is closer.
作者 于鹏
出处 《计算机科学与探索》 CSCD 北大核心 2015年第5期635-640,共6页 Journal of Frontiers of Computer Science and Technology
基金 陕西省自然科学基金No.2011JQ1015 陕西省统计科研计划项目No.2014LX05~~
关键词 计量逻辑学 模糊度 近似推理 真度 quantitative logic fuzzy degree approximate reasoning truth degree
  • 相关文献

参考文献22

  • 1Wang Guojun.Theory ofΣ-(α-tautologies)in revised Kleene systems[J].Science in China:Series E,1998,41(2):188-195. 被引量:1
  • 2Pei Daowu,Yang Rui.Hierarchical structure and applications of fuzzy logical systems[J].International Journal of Approximate Reasoning,2013,54:1483-1495. 被引量:1
  • 3Yang Xiaobin,Zhang Wenxiu.Generalized tautologies of Lukasiewicz system[J].Journal of Shaanxi Normal University:Natural Science Edition,1998,26(4):6-9. 被引量:1
  • 4汪德刚,谷云东,李洪兴.模糊模态命题逻辑及其广义重言式[J].电子学报,2007,35(2):261-264. 被引量:18
  • 5Wu Hongbo.Generalized tautologies of the revised Kleene system[J].Science in China:Series E,2002,32(2):224-229. 被引量:1
  • 6裴道武,李骏.积逻辑系统中的广义重言式(英文)[J].模糊系统与数学,2002,16(4):19-27. 被引量:12
  • 7Wang Guojun,Fu Li,Song Jianshe.Theory of truth degrees of propositions in two valued propositional logic[J].Science in China:Series A,2002,45(9):1106-1116. 被引量:1
  • 8WANG GuoJun1,2 & HUI XiaoJing1,31 Institute of Mathematics, Shaanxi Normal University, Xi’an 710062, China,2 Research Center for Science, Xi’an Jiaotong University, Xi’an 710049, China,3 College of Mathematics and Computer Science, Yan’an University, 716000, China.Randomization of classical inference patterns and its application[J].Science in China(Series F),2007,50(6):867-877. 被引量:26
  • 9Wang Guojun,Zhou Hongjun.Quantitative logic[J].Information Sciences,2009,179(3):226-247. 被引量:1
  • 10Wang Guojun,Zhou Hongjun.Introduction to mathematical logic and resolution principle[M].Beijing:Science Press;Oxford,UK:Alpha Science International Limited,2009. 被引量:1

二级参考文献71

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部