期刊文献+

无参考的模糊图像清晰度评价方法 被引量:6

No-reference Sharpness Assessment for Blurred Image
下载PDF
导出
摘要 目前大部分基于边缘的无参考图像清晰度评价方法中,普遍对严重模糊图像的清晰度不能较好评价.针对这一问题,结合空间域及转换域,提出了基于边缘与小波变换的新的图像清晰度评价方法.该方法在空间域上根据人类视觉系统的特性,由边缘的宽度估计边缘清晰度;并引入多分辨率分解,改善严重模糊图像因检测不到边缘而影响清晰度评价的情况;在转换域上将图像小波分解后每层的所有高频子带合并为一个细节图,并利用该细节图的梯度计算每层的能量,再合并各层能量得到图像的高频能量.最终的图像清晰度由基于空间域的边缘清晰度及基于转换域的高频能量结合得到.实验证明,本文算法得到的客观评价与人类主观评价较一致,性能稳定. Most of the existing edge-based no-reference image sharpness assessment methods generally do not perform well for heavily blurred images. To solve this problem, a new edged-based and wavelet-based algorithm for estimating image sharpness is proposed, using a combination of spatial domain and transform domain. Considering properties of the human visual system, the method estimates the edge sharpness by measuring the edge width;then the multi-resolution decomposition is adopted to improve the performance when detecting heavily blurred images, which usually influenced by the invisibility of edge. Three high-frequency bands in each layer of wavelet decomposition combine to form a detail map. Each layer's energy is computed by the gradient of its detail map and used to get the image high-frequency energy. The final sharpness metric is computed as the product of the edge sharpness and the energy in high- frequency bands. Experiments show that the algorithm is robust and has high correlation with human perception.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1117-1121,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61202294)资助
关键词 图像质量评价 边缘 小波变换 清晰度 无参考 image quality assessment edge wavelet transform sharpness no-reference
  • 相关文献

参考文献1

二级参考文献15

  • 1Ferzli R, Karam L J. A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB). IEEE Trans on Image Processing, 2009, 18(4) : 717-728. 被引量:1
  • 2Hassen R, Wang Zhou, Salama M. No-Reference Image Sharpness Assessment Based on Local Phase Coherence Measurement// Proc of the IEEE International Conference on Acoustics, Speech and Sig- nal Processing. Dallas, USA, 2010:2434-2437. 被引量:1
  • 3Chen M J, Bovik A C. No-Reference Image Blur Assessment Using Multiscale Gradient. EURASIP Journal on Image and Video Process- ing, 2011, 3:1-11. 被引量:1
  • 4Li C, Yuan W, Bovik A C, et al. No-Reference Blur Index Using Blur Comparisons. Electronics Letters, 2011,47(17) : 962-963. 被引量:1
  • 5Ciancio A, da Costa A L N T. No-Reference Blur Assessment of Digital Pictures Based on Multi-Feature Classifiers. IEEE Trans on Image Processing, 2011, 20(1) : 64-75. 被引量:1
  • 6Morrone M C, Owens R A. Feature Detection Rom Local Energy. Pattern Recognition Letters, 1987, 6 ( 5 ) : 303-313. 被引量:1
  • 7Venkatesh S, Owens R A. An Energy Feature Detection Scheme// Pmc of the IEEE International Conference on Image Process. Singa- pore, Singapore, 1989 : 553-557. 被引量:1
  • 8Kovesi P. Image Features from Phase Congruency. Computer Vision Research, 1999, 1(3): 1-26. 被引量:1
  • 9Zhang Lin, Zhang Lei, Mou Xuanqin, et al. FSIM: A Feature Sim- ilarity Index for Image Quality Assessment. IEEE Trans on Image Processing, 2011, 20(8): 2378-2386. 被引量:1
  • 10Li Chaofeng, Bovik A C, Wu Xiaojun J. Blind Image Quality Assessment Using a General Regression Neural Network. IEEE Trans on Neural Networks, 2011,22 (5) : 793-799. 被引量:1

共引文献21

同被引文献32

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部