期刊文献+

负面新闻判定算法的研究与应用 被引量:3

Research and Application of an Algorithm About Negative News Judgment
下载PDF
导出
摘要 针对负面新闻判定问题,现有的构建分类器的统计方法和抽取情感特征的语义分析方法,以其各自存在的局限性,不适用于通用的文本倾向性识别.据此,提出一种融合依存语法和简化的格语法框架理论,结合情感词典对关键句群进行主题相关的语义倾向性分析,进而判定负面新闻的方法.该方法通过依存句法分析识别句中词对间的依赖关系,借用其分析结果,辅助填充基于格语法定义的模板框架槽,可解决单纯使用格语法因标注词典困难而难以实用化问题.实验数据表明,将本方法应用于识别特定主题的负面新闻时,处理速度快、准确性高,具有很好的实用性. For the problem of negative news judgment, there are two typical methods, one is statistical method based on classifiers, and the other is semantic analysis method to extract the affective characteristics. Due to the limitations of the both algorithms, it cannot be used to the application of the general text orientation recognition. Accordingly, an algorithm combines the dependency grammar and the simplified case grammar was proposed, which is used to the negative news judgment by specific semantic analysis. This algorithm analyzes the interdependence of words through dependency parsing, and then fills in the template framework based on case grammar with the result. Experiments show that this method has better performance in accuracy and efficiency.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1047-1051,共5页 Journal of Chinese Computer Systems
关键词 依存关系链 语义格 负面新闻 chain of dependencies semantic case negative news
  • 相关文献

参考文献18

  • 1樊兴华,王鹏,周鹏.一种基于扩展的两步文本倾向性分析方法[J].计算机工程与应用,2012,48(1):162-165. 被引量:4
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:388
  • 3Sajib Dasgupta, Vincent Ng. Mine the easy, classify the hard: a semi-supervised approach to automatic sentiment classification [ C ]. Proceedings of the 47th Annual Meeting of the ACL and the 4th IJC- NLP of the AFNLP, Singapore,2009 : 701-709. 被引量:1
  • 4Kamps J,Marx M, Mokken R J. Using wordnet to measure semantic orientation of adjectives [ C ]. Proceedings of the 4th International Conference on Language Resources and Evaluation LREC-04, Lis- bon,2004:1115-1118. 被引量:1
  • 5Yang Yi-ming, PEDERSEN J O. A comparative study on feature se- lection in text categorization [ C ]. Proceedings of the 14th Interna- tional Conference on Machine Learning, San Francisco, 2004:1115- 1118. 被引量:1
  • 6Gawron J M. Frame semantics[ R]. San Diego, San Deigo State U- niversity, 2008. 被引量:1
  • 7Liu Wei-nan. Research on sentiment orientation analysis of online- shopping review based-on HNC theory [ D ]. Dalian: Dalian Univer- sity of Technology,2013. 被引量:1
  • 8张焕炯,王国胜,钟义信.基于汉明距离的文本相似度计算[J].计算机工程与应用,2001,37(19):21-22. 被引量:60
  • 9Taras Z, Carroll J. Automatic seed word selection for unsupervised sentiment classification of Chinese text [ C ]. Proceedings of the Int Conf on Computational Linguistics, New York,2008 : 1073-1080. 被引量:1
  • 10Covington, Michael A. A fundamental algorithm for dependency parsing[C]. Proceedings of 39th Annual ACM Southeast Confer- ence ,2001:95-102. 被引量:1

二级参考文献32

共引文献518

同被引文献25

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部