期刊文献+

Au与Fe_3O_4纳米微粒共嵌TiO_2纳米纤维的制备及可见光催化性能 被引量:3

TiO2 Nanofibers Embedded with Au and Fe_3O_4 Nanoparticles for Visible-light Photocatalysis
下载PDF
导出
摘要 通过静电纺丝法制备出含有Fe3O4纳米微粒的TiO2纳米纤维,再采用浸渍还原法将Au纳米微粒嵌入到TiO2纳米纤维上,制备出一种具有较强磁性和良好可见光响应能力的复合光催化材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见固体漫反射光谱仪(UV-VisDRS)等对样品的结构和形貌进行表征,并以降解罗丹明B(RhB)为模型反应,考察了样品在可见光照射下的光催化性能.结果表明,嵌入Au纳米微粒可使复合纳米纤维在可见光下降解RhB时表现出非常好的降解速率和降解率;同时,将Fe3O4纳米微粒嵌入TiO2纳米纤维内部可以赋予材料较强的磁性,使材料便于分离和重复利用. TiO2 nanofibers embedded with Au and Fe3O4 nanoparticles,were prepared via a two-step route.Firstly,TiO2 nanofibers embedded with Fe3O4 nanoparticles were synthesized through electrospinning technique.Then the Au nanoparticles were embedded into the nanofibers after sufficient impregnation with HAu Cl4 solution.The structure and morphology of the composite were characterized by X-ray diffraction(XRD),Scan electron microscopy(SEM),transmission electron microscopy(TEM) and UV-Vis diffuse reflection spectra(UV-Vis DRS).The photocatalytic efficiency of the compositc was tested under visible light irradiation using Rhodamine B(Rh B) degradation as the model reaction.The UV-Vis spectra reveal that the photo-adsoption ability,especially for visible light,was improved largely after embedding with Au nanoparticles,owing to the increased active surface area and active sites.Therefore,the TiO2 nanofiber composite exhibited superior photocatalytic efficiency with enhanced degradation efficiency and degradation rate under visible light.Moreover,embedding with Fe3O4 nanoparticles endowed the nanofibers with good magnetic property,which allowed overcoming the difficulty of separation and reutilization.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2015年第5期976-980,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21076094) 内蒙古自然科学基金(批准号:2012MS0208)资助~~
关键词 静电纺丝法 TiO2复合纳米纤维 Fe3O4纳米微粒 Au纳米微粒 可见光催化 Electrospinning technique TiO2 nanofiber composite Fe3O4 nanoparticles Au nanoparticles Visible-light photocatalysis
  • 相关文献

参考文献19

  • 1Linsebigler A. L. , Lu G. Q. , Yates J. T. , Chem. Rev. , 1995, 95,735-758. 被引量:1
  • 2Chen X. , Mao S. S. , Chem. Rev. , 2007, 107, 2891-2959. 被引量:1
  • 3Kubacka A. , Femandez-Garcia M. , Colon G. , Chem. Rev. , 2012, 112, 1555-1614. 被引量:1
  • 4Wang X. D. , Caruso R. A. , J. Mater. Chem. , 2011, 21, 20-28. 被引量:1
  • 5Wang X. , Blackford M. , Prince K. , Caruso R. A. , ACS Appl. Mater. lrtte , 2012, 4, 476-482. 被引量:1
  • 6Asahi R. , Morikawa T. , Ohwaki T. , Aoki K. , Taga Y. , Science, 2001, 293, 269-271. 被引量:1
  • 7Zhao L. , Chen X. F. , Wang X. C. , Zhang Y. J. , Wei W. , Sun Y. H. , Antonietti M. , Titirici M. M., Adv. Mater. , 2010, 22, 3317-3321. 被引量:1
  • 8PanJ. H., DouH. Q., XiongZ. G., XuC., MaJ. Z., ZhaoX. S., J. Mater. Chem.,2010,20,4512-4528. 被引量:1
  • 9Cong Y. , Zhang J. L. ,Chen F. , Anpo M. , J. Phys. Chem. C, 2007, 111, 6976-6982. 被引量:1
  • 10Wang X. , Waterhouse G. I. N. , Mitchell D. R. G. , Prince K. , Caruso R. A. , Chem. Cat. Chem. , 2011, 3, 1763-171. 被引量:1

二级参考文献5

共引文献18

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部