期刊文献+

三类h型中心性和度中心性在预测优先连接中的有效性比较研究 被引量:1

Comparative Study of h-Type Centrality and Degree Centrality for Predicting Preferential Attachment
下载PDF
导出
摘要 h型中心性是近年来情报学中关于网络分析独特方法的有趣进展。本文使用“微机电系统(MEMS)”领域2001~2010年10年的数据集构建合作演化网络,通过Spearman秩相关验证了h型中心性在预测优先连接的有效性,并和度中心性进行了对比。结果显示,微机电系统领域数据集中的作者数和联系数符合优先连接的增长机制,度中心性和h型中心性方法都可以有效地预测优先连接。h型中心性方法可为预测优先连接提供更多的视角。其中,主要考虑加权网络节点联系的权重的一类方法(即h-Degree,a—Degree和g-Degree)预测结果与度中心性存在相当区别。而只考虑节点的相邻度的一类方法(即L—index,al-index和gl—index)和结合了节点的邻节点的度以及节点和邻节点之间的联系的权重的一类方法(即Hw-Degree,Aw-Degree和Gw-Degree)表现相对接近于度中心性,这两类方法可以作为合作网络演化发展趋势的预测的补充或替代参数。 In recent years, h-type centrality has become an interesting topic in unique network analysis methods in information science. We use MEMS field data sets from 2001 to 2010 to build scientific collaboration network evolution. We first test the mechanism of growth and then test the effectiveness of h-type centrality in predicting preferential attachment using the Spearman rank correlation in order to compare them with degree centrality. It was found that the number of authors and links accord with the mechanism of growth and h-type centrality approaches and degree centrality are efficient to predict the preferential attachment. The h-type centrality methods can provide more perspectives for the prediction of preferential attachment. The category of approaches (i. e. , h-Degree, a-Degree, g-Degree) is considerably different from degree centrality. Andthe category of approaches (i. e. , L-index, M-index, gl-index) to consider a node's neighbors' degree and the category of approaches ( i. e. , Hw-Degree, Aw-Degree, Gw-Degree) are closer to the degree centrality, so they can be taken as complementary or alternative parameters to predict accurately for the evolution of cooperation networks.
出处 《情报学报》 CSSCI 北大核心 2015年第2期156-163,共8页 Journal of the China Society for Scientific and Technical Information
基金 中央高校基本科研业务费No.CDJKXB12004资助
关键词 优先连接 h型中心性度 中心性网络 分析微机电系统 preferential attachment, h-type centrality, degree centrality, network analysis, MEMS
  • 相关文献

参考文献17

  • 1Borgatti S P,Mehra A,Brass D J, et al. Network Analysis in the Social Sciences[ J]. Science, 2009, 323 (5916) : 892 -895. 被引量:1
  • 2化柏林,武夷山.网络社会需要网络分析[J].情报学报,2013,32(8). 被引量:4
  • 3Barabasi A L, Albert R. Emergence of scaling in random networks [ J ]. Science, 1999, 286 (5439) : 509-512. 被引量:1
  • 4Borner K, Sanyal S, Vespignani A. Network science[ J ]. Annual Review of Information Scieneeand and Technology, 2007,41 : 537-607. 被引量:1
  • 5Barabasi A. Scale-Free Networks: A Decade and Beyond [J]. Science, 2009, 325(5939): 412-413. 被引量:1
  • 6Barabasi A. The network takeover[ J ]. Nature Physics ,2012, 8(1) : 14-16. 被引量:1
  • 7杨洪勇,王福生.科研合作网络中的模体涌现模型[J].情报学报,2009,28(4):606-609. 被引量:8
  • 8Hirsch J E. An index to quantify an individual's scientific research output[ J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (46) : 16569-16572. 被引量:1
  • 9Kom A, Schubert A, Telcs A. Lobby index in networks [ J ]. Physic A-Statistical Mechanics and its Applications, 2009, 388 ( 11 ) : 2221-2226. 被引量:1
  • 10Zhao S X, Rousseau R, Ye F Y. h-Degree as a basic measure in weighted networks [ J ]. Journal of Informetrics, 2011, 5(4): 668-677. 被引量:1

二级参考文献42

共引文献28

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部