期刊文献+

MQ函数和Matern函数在LMAPS方法中的比较

Comparison Study of the Two Kinds of RBFs in the LMAPS Method: MQ and Matern
下载PDF
导出
摘要 利用局部近似特别解方法,选取Matern函数作为径向基函数,求解偏微分方程。在不规则区域上求解Possion方程,给出形参c的近似选取方法,并将Matern函数和优化c后的MQ函数得到的误差进行比较分析,同时将这两种函数应用到规则区域上的二维Burgers'方程进行数值求解。数值实验表明,这两种函数对于求解偏微分方程都具有较高的近似精度和计算效率。 By choosing the MQ and Matern as the radial basis functions for local approximate particular solutions,we solve partial differential equations (PDEs). A mehtod for choosing an optimal value of the shape parameter is proposed and applied to solve the Possion problems and Burgers" equations in irregular domains and regular domains respectively. Numerical experiments show that these two functions are suitable for solving the PDEs with high accuracy and efficiency.
机构地区 河海大学理学院
出处 《江南大学学报(自然科学版)》 CAS 2015年第2期242-247,共6页 Joural of Jiangnan University (Natural Science Edition) 
关键词 LMAPS方法 径向基函数 MQ函数 Matern函数 不规则区域 LMAPS, RBFs, MQ function, Matern function, irregular domain
  • 相关文献

参考文献14

  • 1Kansa E J. Muhiquadrics-a scattered data approximation scheme with applications to comutational fluid-dynamics. I. surface approximations and partial derivative estimates[J]. Comput Math Appl, 1990,19 : 127-145. 被引量:1
  • 2Kansa E J. Multiquadrics-a scattered data approximation scheme with applications to comutational fluid-dynamics. II. solutions to parabolic, hyperbolic and elliptic partial differential equations [J]. Comput Math Appl,2000,39 : 123-137. 被引量:1
  • 3Wendland H. Piecewise polynomial,positive definite and compactly supported radial basis functions of minimal degree [J]. Adv Comput Math, 1995,4( 1 ) :389-396. 被引量:1
  • 4WU Z. Multivariate compactly supported positive definite radial functions [J]. Adv Comput Math, 1995,4 (1) :283-292. 被引量:1
  • 5Vertnik R,Sarler B. Meshless local radial basis function collocation method for convective- diffusive solid-liquid phase change problems [J]. International Journal of Numerical Methods for Heat and Fluid Flow,2006,16:617-640. 被引量:1
  • 6CHEN C S, FAN C M, WEN P H. The method of particular solutions for solving certain partial differential equations [J]. Numerical Methods of Partial Differential Equations ,2012,28:506-522. 被引量:1
  • 7YAO G M, CHEN C S, Kolibal J. A localized approach for the method of approximate particular solutions [J]. Comput Math Appl, 2011,61:2376-2387. 被引量:1
  • 8SHU C, DING H, Yeo K S. Local radial basis function-based differential quadrature method and its application to solve two- dimensional incompressible Navier-Stokes equations [J]. Computer Methods in Applied Mechanics and Engineering,2003,192: 941-954. 被引量:1
  • 9CHEN C S, FAN C M, WEN P H. The method of particular solutions for solving elliptic problems with variable coefficients [J]. International Journal of Computational Methods, 2011,8:545-559. 被引量:1
  • 10Kansa E J, Carlson R E. Improved accuracy of multiquadric interpolation using variable shape parameters [J]. Comput Math Appl, 1992,24:99-120. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部