摘要
利用局部近似特别解方法,选取Matern函数作为径向基函数,求解偏微分方程。在不规则区域上求解Possion方程,给出形参c的近似选取方法,并将Matern函数和优化c后的MQ函数得到的误差进行比较分析,同时将这两种函数应用到规则区域上的二维Burgers'方程进行数值求解。数值实验表明,这两种函数对于求解偏微分方程都具有较高的近似精度和计算效率。
By choosing the MQ and Matern as the radial basis functions for local approximate particular solutions,we solve partial differential equations (PDEs). A mehtod for choosing an optimal value of the shape parameter is proposed and applied to solve the Possion problems and Burgers" equations in irregular domains and regular domains respectively. Numerical experiments show that these two functions are suitable for solving the PDEs with high accuracy and efficiency.
出处
《江南大学学报(自然科学版)》
CAS
2015年第2期242-247,共6页
Joural of Jiangnan University (Natural Science Edition)