摘要
This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principle, the normalization method has been improved by intro- ducing a forcible blunting correction. With the improved normalization method, the J-resistance curves of five different metallic materials of CT and SEB specimens are estimated. The forcible blunting correction of initial crack size plays an important role in the J-resistance curve estima- tion, which is closely related to the strain hardening level of material. The higher level of strain hardening leads to a greater difference in JQ determined by different slopes of the blunting line. If the blunting line coefficient recommended by ASTM E1820-11 is used in the improved nor- realization method, it will lead to greater fracture resistance than that processed by the blunting line coefficient recommended by ISO 12135-2002. Therefore, the influence of the blunting line on the determination of JQ must be taken into full account in the fracture toughness assessment of metallic materials.
This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principle, the normalization method has been improved by intro- ducing a forcible blunting correction. With the improved normalization method, the J-resistance curves of five different metallic materials of CT and SEB specimens are estimated. The forcible blunting correction of initial crack size plays an important role in the J-resistance curve estima- tion, which is closely related to the strain hardening level of material. The higher level of strain hardening leads to a greater difference in JQ determined by different slopes of the blunting line. If the blunting line coefficient recommended by ASTM E1820-11 is used in the improved nor- realization method, it will lead to greater fracture resistance than that processed by the blunting line coefficient recommended by ISO 12135-2002. Therefore, the influence of the blunting line on the determination of JQ must be taken into full account in the fracture toughness assessment of metallic materials.
基金
supported by the National Natural Science Foundation of China(Nos.11472228 and 11202174)
the Sichuan Provincial Youth Science and Technology Innovation Team(No.2013TD0004)