期刊文献+

基于系数矩阵二范数的2维激-摄标定方法 被引量:4

Calibration method for 2D laser radar and camera based on 2-norm of coefficient matrix
下载PDF
导出
摘要 基于棋盘格的2维激光雷达和摄像机标定方法中,Francisco方法提出一个最小解决方案,通过3组"线-面"空间约束分别求解旋转矩阵和平移向量。在对偶空间中,Francisco方法巧妙地将旋转矩阵的求解转换为对P3P问题和三点匹配估计运动问题的求解。但是Francisco方法需要首先穷尽计算所有3个标定板组合,然后根据误差函数评价出一个最优解析解,因此计算复杂度较高。为此首先根据线-面约束方程组的系数矩阵的逆阵的二范数来选取一组抗扰动能力最强的组合,并依据这个组合计算解析解,其次改进了评价最优解析解的误差函数。与当前最先进的标定方法比较,实验结果定性和定量地显示该方法更快速更精确。 In all the calibration methods of 2D laser radar and camera based on the checkerboard, the Francisco method proposes a minimal solution, which solves the relative rotation matrix and translation vector with the constraints of three planes and correspond- ing coplanar lines. In the dual space, the Francisco method transforms the solution problem of the rotation matrix into the solution problems of P3P and three point matching motion estimation, cleverly. However, the Francisco method has to calculate all the combinations of three checkerboards exhaustively, and then evaluate an optimum closed-form solution according to the error func- tion; therefore the computational complexity of the method is very high. To deal with this problem, firstly, we select a group of three checkerboards that has the strongest anti-disturbance capability based on the 2-norm of the inverse coefficient matrix of the lin- ear equations corresponding to the constraints of the coplanar lines and planes. Secondly, we compute a group of closed-form solu- tion of the calibration parameter according to the three checkerboards. Lastly, we improve the error function for evaluating the qual- ity of the closed-form solution. Compared with the most advanced calibration methods, experiment results show that the proposed method is faster and more accurate.
作者 彭梦 蔡自兴
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第4期749-757,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(90820302 61403423)资助项目
关键词 激光雷达 摄像机 参数标定 信息融合 laser radar camera parameter calibration information fusion
  • 相关文献

参考文献21

  • 1MAJDIK A L, SZOKE 1, TAMAS L. Laser and vision based map building techniques for mobile robot navigation [ C ]. 17th IEEE International Cotffereuce on Automation Quality and Testing Robotics AQTR, Cluj-Napoca, Romania, 2010: 360-365. 被引量:1
  • 2张宇.一种图像确认目标的多目标跟踪方法[J].电子测量与仪器学报,2014,28(6):617-624. 被引量:11
  • 3张静,刘晓伟,刘安安,苏育挺,张哲.基于多特征自适应融合的目标跟踪算法[J].电子测量技术,2013,36(11):30-33. 被引量:12
  • 4ZHOU L. Fusing laser point cloud and visual image at data level using a new reconstruction algorithm [ C ]. In- telligent Vehicles Symposium (Ⅳ), Piscataway, N J, USA, 2013 : 1356-1361. 被引量:1
  • 5李红岩,毛征,袁建建,曲劲松,吴珍荣.一种基于算法融合的运动目标跟踪算法[J].国外电子测量技术,2013,32(12):36-40. 被引量:40
  • 6ZHANG Q, PLESS R. Extrinsic calibration of a camera and laser range finder (improves camera calibration)[ C ]. IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004,3: 2301-2306. 被引量:1
  • 7PANDEY G, MCBRIDE J, SAVARESE S, et al. Extrin- sic calibration of a 3D laser scanner and an omnidirec- tional camera [ C ]. 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy, 2010, 7 (1): 336-341. 被引量:1
  • 8GEIGER A, MOOSMANN F, CAR O, et al. Auto- matic camera and range sensor calibration using a sin- gle shot[ C ]. IEEE International Conference on Ro- botics and Automation, Saint Paul, MN, USA, 2012 : 3936-3943. 被引量:1
  • 9HUANG L, BARTH M. A novel multi-planar LIDAR and computer vision calibration procedure using 2D patterns for automated navigation [ C ]. IEEE Intelligent Vehicles Symposium, Xi'an, China, 2010:117-122. 被引量:1
  • 10TULSUK P, SRESTASATHIERN P, RUCHANURUCKS M, et al. A novel method for extrinsic parameters estimation be- tween a single-line scan LiDAR and a camera [ C 1. Intelli- gent Vehicles Symposium Proceedings, Dearborn, MI, Unit- ed states, 2014: 781-786. 被引量:1

二级参考文献71

  • 1刘大学,戴斌,李政,贺汉根.一种单线激光雷达和可见光摄像机的标定方法[J].华中科技大学学报(自然科学版),2008,36(S1):68-71. 被引量:15
  • 2王兰云,赵拥军.相控阵雷达多目标跟踪原理及数据关联算法研究[J].电光与控制,2007,14(1):30-33. 被引量:8
  • 3赵莉,陈泉林.基于Kalman滤波器的车辆检测与跟踪系统的实现[J].电子测量技术,2007,30(2):165-168. 被引量:8
  • 4KLIMENTJEW D,ZHANG J W. Adaptive sensor-fusion of depth and color information for cognitive robotics [ C ]. 2011 IEEE International Conference on Robotics and Bio- mimetics (ROBIO) ,2011:957-962. 被引量:1
  • 5BEESON P, MACMAHON M, MODAYIL J, et al. Integra- ting multiple representations of spatial knowledge for map- ping, navigation and communication [ C ]. Interaction Chal- lenges for Intelligent Assistants, AAAI Spring Symposium Series, 2007 : 513-520. 被引量:1
  • 6ZHANG Q L, PLESS R. Extrinsic calibration of a camera and laser range finder (improves camera calibration ) [ C ]. Proceedings of 2004 IEEE/RSJ International Con- ference on Intelligent Robots and Systems, Sendai, Japan, 2004:2301-2306. 被引量:1
  • 7BAUERMANN I, STEINBACH E. Joint calibration of a range and visual sensor for the acquisition of RGBZ con- centric mosaics [ C ]. Proceedings of VMV2005, Erlan- gen, Germany,2005. 被引量:1
  • 8ALIAKBARPOUR H, NUNEZ P, PRADO J, et al. An effi- cient algorithm for extrinsic calibration between a 3D laser range finder and a stereo camera for surveillance [ C ]. Proceedings of ICAR 2009, Munich, Germany,2009 : 1-6. 被引量:1
  • 9NUNEZ P, DREWS P JR, ROCHA R, et al. Data fusion calibration for a 3D laser range finder and a camera using inertial data[ C ]. Proceedings of the 4th European Confer- ence on Mobile Robots ( ECMR 09 ), Mlini, Croatia, 2009 : 31-36. 被引量:1
  • 10KASSIR, PEYNOT T. Reliable automatic camera-laser calibration [ C ]. Proceedings of the 2010 Australasian Conference on Robotics & Automation (ACRA 2010 ), Brisbane, Australia, 2010. 被引量:1

共引文献68

同被引文献30

引证文献4

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部