期刊文献+

一种单输入CMAC策略在机械手逆模控制中的应用

Application of a single-input CMAC strategy to robot arm inverse model control
下载PDF
导出
摘要 小脑模型关节控制器(CMAC)是一种结构简单、学习速度快的局部神经网络,适合于实时控制。但对于某些高维输入系统来说,CMAC需要大量的存储空间,实际应用性能下降。文章结合传统PID反馈控制与神经网络逆模控制的特点,利用CMAC网络对机械手进行逆模控制;针对网络所需输入量较多的问题,提出了一种单输入CMAC网络的逆模控制策略,并将提出的控制策略应用于2自由度机械手的轨迹控制;引入测量变量使网络输入由二维转换为一维,减少了神经网络所需存储空间,提高了学习速度。仿真实验结果表明,所提出的控制策略克服了机械手非线性和不确定性的影响,是可行的。 Cerebellar model articulation controller(CMAC)is a simple,fast learning neural network which is suitable for real-time control.However,for some high-dimension inputs systems,CMAC requires a lot of storage space,which reduces the practical usefulness.In this paper,CMAC is utilized to implement robot arm inverse model control in view of the characteristics of traditional PID feedback control and neural network inverse model control.A single-input CMAC inverse model control strategy is proposed to solve high-dimension inputs problem.In simulating a 2-DOF robot arm control,the strategy greatly improves the storage space and the learning speed with the help of signed distance which converts two-dimension inputs to one-dimension input.The simulation results show that the proposed scheme counteracts the disadvantageous influence of nonlinearities and uncertainties in robot arm and performances well.
作者 陈梅 方伟
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期454-457,共4页 Journal of Hefei University of Technology:Natural Science
关键词 神经网络 小脑模型关节控制器(CMAC) 逆模控制 机械手 轨迹控制 neural network cerebellar model articulation controller(CMAC) inverse model control robot arm trajectory control
  • 相关文献

参考文献4

二级参考文献23

  • 1卢武昌,胡山立.基于神经网络的Agent电子商务协商模型[J].计算机应用,2005,25(7):1638-1640. 被引量:11
  • 2吴爱国,郝润生.一种改进BP算法在机械手逆运动学中的应用[J].中国工程科学,2005,7(7):34-38. 被引量:4
  • 3ALBUS J S. A theory of cerebeUar function[J]. Mathematics Biosciences, 1971, 10(1): 25- 61. 被引量:1
  • 4WEN C, LINT C, CHANG K C, et al. Classification of ECG complexes using self-organizing CMAC[J]. Measurement, 2009, 42(3): 399 - 407. 被引量:1
  • 5ZHAO H L, SUGISAKA M. Simulation study of CMAC control for the robot joint actuated by McKibben muscles[J]. Applied Mathematics and Computation, 2008, 203(1): 457 - 462. 被引量:1
  • 6CHENG K H. CMAC-based neuro-fuzzy approach for complex system modeling[J]. Neurocomputing, 2009, 72(7): 1763 - 1774. 被引量:1
  • 7IIGUNI Y. Hierarchical image coding via cerebellar model arithmetic computers[J]. IEEE Transactions on Image Processing, 1996, 5(6): 1393- 1401. 被引量:1
  • 8SU S F, TAO T, HUNG T H. Credit assigned CMAC and its application to online learning robust controllers[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2003, 33(2): 202 - 213. 被引量:1
  • 9HANSEN L K, SALAMON E Neural network ensembles[J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993 - 1001. 被引量:1
  • 10Jennings N R, Sycara K, Wooldridge M. A roadmap of agent research and development[J]. Autonomous Agents and Multi-Agent Systems, 1998, (1) : 7-38. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部