期刊文献+

A local energy-preserving scheme for Klein Gordon Schrdinger equations

A local energy-preserving scheme for Klein Gordon Schrdinger equations
下载PDF
导出
摘要 A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments. A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期171-176,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11201169,11271195,and 41231173) the Project of Graduate Education Innovation of Jiangsu Province,China(Grant No.CXLX13 366)
关键词 Klein-Gordon-Schrodinger equations energy conservation law local structure convergence analysis Klein-Gordon-Schrodinger equations, energy conservation law, local structure, convergence analysis
  • 相关文献

参考文献19

  • 1Fukuda I and Tsutsumi H 1975 Proc. Japan Acad. 51402. 被引量:1
  • 2Lu K and Wang B 2001 1. Differ. equations 170 281. 被引量:1
  • 3Natali F and Pastor A 2010 Commun. Pure Appl. Anal. 9413. 被引量:1
  • 4Zhang L 2005 Appl. Math. Comput. 163343. 被引量:1
  • 5Kong L, Liu R and Xu Z 2006 Appl. Math. Comput. 181 342. 被引量:1
  • 6Cai J, Yang B and Liang H 2013 Chin. Phys. B 22 030209. 被引量:1
  • 7Hong J, Jiang Sand Li C 2009 J. Comput. Phys. 228 3517. 被引量:1
  • 8Kong L 2010 Comput. Phys. Commun. 1811369. 被引量:1
  • 9Hong J 2007 J. Phys. A: Math. Theor. 409125. 被引量:1
  • 10Wang T and Jiang Y 2012 Commun. Nonlinear Sci. Numer. Simul. 17 4565. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部