期刊文献+

Atom–field entanglement in the Jaynes Cummings model without rotating wave approximation 被引量:3

Atom–field entanglement in the Jaynes Cummings model without rotating wave approximation
下载PDF
导出
摘要 In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different. In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期70-75,共6页 中国物理B(英文版)
关键词 atom-photon interaction Jaynes--Cummings model quantum entanglement atom-photon interaction, Jaynes--Cummings model, quantum entanglement
  • 相关文献

参考文献36

  • 1Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89. 被引量:1
  • 2Gerry C and Knight P 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press) p. 92. 被引量:1
  • 3Ford G W and O'Connell R F 1997 Physica A 243 377. 被引量:1
  • 4Zhou Y, Zhang Y J and Xia Y J X 2008 Acta Phys. Sin. 57 21. 被引量:1
  • 5Liang J Q, Yan Q W and Zhang G F 2003 Acta Phys. Sin. 52 2393. 被引量:1
  • 6Gao K L, Kuang L M and Zeng H S 2002 Chin. Phys. 11 486. 被引量:1
  • 7Mirzaee M and Kamani N 2013 Chin. Phys. B 22 094203. 被引量:1
  • 8Ren X Z, Jiang D L, Cong H L and Li L 2010 Chin. Phys. B 19 090309. 被引量:1
  • 9Shen J Q, Zhu H Y and Fu J 2002 Chin. Phys. 11 1240. 被引量:1
  • 10Lu H X and Wang X Q 2000 Chin. Phys. 9 568. 被引量:1

同被引文献17

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部