期刊文献+

基于RPCA的SAR图像纹理特征去噪 被引量:1

SAR image texture features denoised using RPCA
原文传递
导出
摘要 合成孔径雷达(SAR)图像具有丰富的纹理信息,这些纹理信息能反映地物空间结构关系。当前纹理特征被广泛应用于SAR图像分类和SAR图像分割中。受成像因素影响,直接采用从SAR图像中提取的纹理特征效果不够好。为避免传统先滤波再提取纹理特征的方法对纹理、边缘信息造成损失,提出了一种先提取SAR图像纹理特征,再利用Robust PCA方法对纹理特征去噪的新方法,最后采用Kmeans聚类方法检验RPCA处理后的纹理特征表达效果。实验结果表明该方法能将聚类正确率从82%提高到84%。 SAR(synthetic aperture radar) images contain abundant texture information, which reflects the spatial structure of ground objects. Texture features have been widely used in SAR image classification and segmentation. However, due to effects of the imaging process, classification and segmentation results are not satisfied using texture features extracted directly from SAR image. To avoid the texture information loss using filters before texture features extraction, a new method is proposed that first extracting texture features; then applying the Robust PCA to denoising texture features. Finally Kmeans is used to testify the denoised texture features. Experiment results show that the accuracy rate is improved from 82% to 84%.
作者 伦朝林
出处 《电子技术(上海)》 2015年第4期6-9,5,共5页 Electronic Technology
基金 国家自然科学基金重点项目"高分辨率SAR测试库及数据质量评估"支持(61331015) 依托单位为"上海交通大学" 本人所在实验室承担了该项目的子课题
关键词 SAR图像 灰度共生矩阵 ROBUST PCA Kmeans SAR image GLCM(Gray level co-occurrence matrix) Robust PCA Kmeans
  • 相关文献

参考文献20

  • 1Haralick R M, Shanmug K, Dinstein I. Texture features for image classification [J]. IEEE Transactions on Systems Man Cybernet, 1973, 3 (6):610-621. 被引量:1
  • 2Clausi David A. Comparison and fusion of Co-occurrence, Gabor, and MRF texture features for classification of SAR sea ice imagery [J]. Atmos. Oceans, 2001, 39 (3):183-194. 被引量:1
  • 3Clausi David A, Yue B. Comparing cooccurrence probabilities and markov random fields for texture analysis[J]. IEEE Trans. Geosci. Remote Sens, 2004, 42 (1):215-228. 被引量:1
  • 4Chamundeeswari Vijaya V, Singh D, Singh K. An Analysis of Texture Measures in PCA Based Unsupervised Classification of SAR Images[J]. IEEE Geoscience and Remote Sensing Letters 2009, 6 (2):214-218. 被引量:1
  • 5Soh Leen-Kiat, Tsatsoulis C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices [J]. CSE Journal Articles 1999, 37 (2):780-795. 被引量:1
  • 6Kandaswamy Umasankar, Adjeroh D A, Lee M C. Efficient Texture Analysis of SAR Imagery[J]. IEEE transactions on geoscience and remote sensing, 2005, 43 (9):2075-2083. 被引量:1
  • 7Mandeep Singh, Gunjit K. SAR Image Classification Using PCA and Texture Analysis[C]. CCIS, 2011, 147:435-439. 被引量:1
  • 8刘健,程英蕾,孙纪达.基于GLCM特征的改进FCM的SAR图像分割方法[J].计算机工程与设计,2012,33(9):3502-3506. 被引量:10
  • 9龙海翔,高鑫.基于纹理和边缘的SAR图像SVM分类[J].计算机应用研究,2011,28(9):3551-3553. 被引量:6
  • 10程雪姣,徐佳,刘庆群,陆吉.面向城市地物分类的SAR图像纹理特征提取与分析[J].测绘与空间地理信息,2014,37(4):47-50. 被引量:3

二级参考文献44

共引文献27

同被引文献14

  • 1Nister D, Stewenius H. Robust Scalable Recognition with a Vocabulary Tree[C]//null. IEEE Computer Society, 2006:2161-2168. 被引量:1
  • 2Bay H, Ess A, Tuytelaars T, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision & Image Understanding, 2008, 110(3):346-359. 被引量:1
  • 3Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[C]//International Journal of Computer Vision. 2004:91-110. 被引量:1
  • 4Rublee E, Rabaud V, Konolige K. ORB: An efficient alternative to SIFT or SURF[C]//Computer Vision (ICCV),2011 IEEE International Conference 2011:2564-2571. 被引量:1
  • 5Datar M, Immorlica N, Indyk P, et al. Locality- sensitive hashing scheme based on p-stable distributions[C]//Twentieth Symposium on Computational Geometry. ACM, 2004:253-262. 被引量:1
  • 6Grauman K, Darrell T. Efficient Image Matching with Distributions of Local Invariant Features[C]// null. IEEE Computer Society, 2005:627-634. 被引量:1
  • 7Zhang Wei, Yu Bing, Zelinsky G J, et al. Object Class Recognition Using Multiple Layer Boosting with Heterogeneous Features[C]//CVPR '05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).2005:323-330. 被引量:1
  • 8Rutkowski L. Computational intelligence - methods and techniques. [J].All Publications,2010,16(7): 2053-2062. 被引量:1
  • 9王爽,潘静.一种基于颜色与纹理特征的图像模糊检索算法[J].电子测量技术,2014,37(2):54-57. 被引量:10
  • 10黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[J].计算机学报,2014,37(6):1225-1240. 被引量:193

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部