期刊文献+

渗流相变实验

Percolation Experiment
下载PDF
导出
摘要 基于渗流相变理论设计了可重复使用的渗流实验仪器。在大学物理甚至高中物理一次实验课的时间内,利用渗流实验仪进行测量不同随机占据概率下的电流,对四次实验结果进行平均后,绘制相对电导率与占据概率曲线,可以获得与文献[9]相似的结果,再现渗流相变的存在。 A simple reusable percolation experimental instrument is designed based on the percolation theory. This experiment can be carried out at an undergraduate physics laboratory,or even at a high school laboratory. By measuring currency under different occupied probability,a curve representing the relative conductivity as a function of concentration p,which is averaged over 4 experiments,is presented. This curve has the same result with the reference and demonstrates the existence of percolation phenomena.
机构地区 天津农学院
出处 《大学物理实验》 2015年第2期49-52,共4页 Physical Experiment of College
基金 天津市科技型中小企业创新基金项目(14zxcxsn03230) 天津农学院青年科技发展基金项目(2012N08)
关键词 渗流相变 占据概率 电导率 percolation occupied probability conductivity
  • 相关文献

参考文献11

  • 1D. Stauffer, A. Aharony. Intorduction to Percolation Theory (2nd) [ M ]. London : Taylor& Fracis, 1991. 被引量:1
  • 2A. Gandolfi. Percolation Methods for SEIR Epidemics on Graphs, in: V. Rao, R. Durvasula ( Eds. ), Dynamic Models of Infectious Diseases:Non Vector-Borne Dis- eases, vol. 2, New York : Springer, 2013, p31-58. 被引量:1
  • 3A. G. Hunt. Percolation Theory for Flow in Porous Media [ M ]. Heidelberg: Springer,2005. 被引量:1
  • 4Y. Li, D. Y. Wu, X. S. Huang, ed. Percolation of Inter- acting Classical Dimers on the Square Lattice [ J ]. Physica A ,404 : p285-290,2014. 被引量:1
  • 5G. A. Schwartz, S. J. Luduena. An Experimental Method for Studying Two-dimensional Percolation [ J ]. Am. J. Phys. 72 ( 3 ) :364-366,2004. 被引量:1
  • 6S. E. Gerofsky, M. W. Meisel. Hole-punching Paper for Physics and Fun:a Two-dimensional Percolation Exer- cise [ J ]. Physics Education, 37 ( 3 ) : 262-263,2002. 被引量:1
  • 7M. Basta, V. Picciarelli, R. Stella. An Introduction to Percolation[ J ]. Eur. J. Phys. 15:97-101,1994. 被引量:1
  • 8R. Mehr, T. Grossman, N. Kristianpoller, ed. Simple Percolation Experiment in Two Dimensions [ J ]. Am. J. Phys. 54 ( 3 ) :271-273,1986. 被引量:1
  • 9B. J. Last, D. J. Thouless. Percolation Theory and Elec- trical Conductivity [J]. Phy. Rev. Lett. 27(25) :1719- 1721,1971. 被引量:1
  • 10于渌,郝柏林,陈晓松著..边缘奇迹 相变和临界现象[M].北京:科学出版社,2005:236.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部