期刊文献+

基于神经网络的PID控制方法在矿井提升机中的应用 被引量:5

PID control methods based on neural network application in the mine hoist
下载PDF
导出
摘要 通过对矿井提升机的控制策略进行研究,达到提高提升机控制系统的性能,使其运行安全、可靠,满足煤矿安全生产的要求。在分析非线性PID控制系统理论基础上,采用基于神经网络算法改进非线性PID控制方法,实现减小系统的超调、提高稳定性等运行指标。并使用仿真工具MATLAB进行了数字仿真,证实了基于神经网络非线性PID控制方法在矿井提升机控制系统中的效果。 This article studied the mine hoist control strategy, improved the performance of elevator control system, to make a safe and reliable operation, and meet the requirements of coal mine safety pro- duction. For nonlinear PID control system on the basis of theoretical analysis, the improved nonlinear PID control method based on neural network algorithm, achieved reduce the overshoot and improve the stabili- ty of the system running indexes. And digital simulation is carried out by using the simulation tool MAT- LAB, proved the effect of nonlinear PID control method based on neural network in the mine hoist control system.
作者 胥良 贾宪生
出处 《工业仪表与自动化装置》 2015年第2期77-80,共4页 Industrial Instrumentation & Automation
关键词 矿井提升机 PID技术 非线性系统 神经网络 mine hoist PID technology nonlinear systeml neural network
  • 相关文献

参考文献8

二级参考文献26

  • 1李凯,陈兴林,宋申民.基于神经网络的感应电机软起动控制器设计[J].中南大学学报(自然科学版),2009,40(S1):19-24. 被引量:3
  • 2陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2003.. 被引量:88
  • 3Hang C C, Astrom K J, Ho W K.Refinements of the Ziegler-Nichols tuning formula[J].IEE Proceeding-D, 1991, 138(2):111-118. 被引量:1
  • 4王树青.工业过程控制工程[M]{H}北京:化学工业出版社,2003. 被引量:1
  • 5刘金琨.先进PID控制MATLAB仿真[M]{H}北京:电子工业出版社,2004. 被引量:1
  • 6F G Shinsky.过程控制系统应用设计与整定[M]{H}北京:清华大学出版社,2004. 被引量:1
  • 7韩璞.控制系统数字仿真技术[M]{H}北京:中国电力出版社,2007. 被引量:1
  • 8M A Johnson,M H Moradi. PID Controller Design[M].London:Springer Vedag,2003. 被引量:1
  • 9M Zhuang,D P Atherton. Automatic tuning of optimum PID controllers[J].IEE proceedings Control and Application,1993,(140):216-224. 被引量:1
  • 10Peng Ren,Zheng Xiang. A Multitask Scheduling Algorithm for VxWorks:Design and Task Simulation[A].2010.353. 被引量:1

共引文献14

同被引文献31

  • 1姜成志,张绍兵.建立在神经网络基础上的煤矿突水预测模型[J].黑龙江科技学院学报,2006,16(1):8-11. 被引量:13
  • 2Bhattacharyya N,Bandyopadhyay R,Bhuyan M, et al. Elec- tronic nose for black tea classification and correlation of measurements with 'tea taster' marks[J].IEEE Transactions on Instrumentation and Measurement,2008,57 (7):1313- 1321. 被引量:1
  • 3Furferi, R., Governi, L., Volpe, Y., 2010, ANN-based method for olive ripening indexautomatic prediction [J]. Journal of Food Engineering,2010(101):318-328. 被引量:1
  • 4Ivarsson P, Kikkawa Y, Winquist, F, et al.Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor[J].Analytical Chimica Acta,2001(449):59-68. 被引量:1
  • 5Makhotkina O,Kilmartin Paul A,The use of cyclic voltamme-try for wine analysis: determination of polyphenols and tree sulfur dioxide[J].Analytica Chimiea Acta ,2010,668 (2):155- 165. 被引量:1
  • 6Palit M,Tudu B,Dutta P.K, et aI.Classification of black tea taste and correlation with tea taster's mark using voltammetric electronic tongue [J].IEEE Transactions on Instrumentation and Measurement,2010,59(8):2230-2239. 被引量:1
  • 7Kashaninejad M,Dehghani A.A,Kashiri, M.Modeling of wheat soaking using two artificial neural networks (MLP and RBF) [J]. Journal of Food Engineering,2009(91):602-607. 被引量:1
  • 8Torrecilla J.S,Otero L,Sanz P.D.Artifieial neural networks: a promising tool to design and optimize high-pressure food proeesses[J].Joumal of Food Engineering,2005(69):299-306. 被引量:1
  • 9刘再斌,靳德武,刘其声.基于二项logistic回归模型与CART树的煤层底板突水预测[J].煤田地质与勘探,2009,37(1):56-61. 被引量:14
  • 10许江涛,邓寅生,文广超,许亚坤,王海宁.事故树分析法在矿井水害防治中的应用[J].西安科技大学学报,2009,29(4):405-409. 被引量:13

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部