期刊文献+

NETWORK ANALYSIS OF TERRORIST ACTIVITIES 被引量:2

NETWORK ANALYSIS OF TERRORIST ACTIVITIES
原文传递
导出
摘要 This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spectrum analysis are used to describe the importance of each vertex.On this basis,two types of core vertices——The center of communities and the intermediary vertices among communities— are distinguished.The weighted extreme optimization(WEO) algorithm is also applied to detect communities in the one-mode network.In the "terrorist-terrorist organization" bipartite network,the authors adopt centrality analysis as well as clustering analysis based on the original bipartite network in order to calculate the importance of each vertex,and apply the edge clustering coefficient algorithm to detect the communities.The comparative and empirical analysis indicates that this research has been proved to be an effective way to identify the core members,key organizations,and communities in the network of "East Turkistan" terrorist activity.The results can provide a scientific basis for the analysis of "East Turkistan" terrorist activity,and thus provide decision support for the real work of "anti-terrorism".
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1079-1094,共16页 系统科学与复杂性学报(英文版)
基金 supported by the Natural Science Foundation of China under Grants Nos.70771011 and 61174150 the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-09-0228 Ph.D.Programs Foundation of Ministry of Education of China under Grant No.20110003110027 the China Scholarship Council(CSC)
关键词 ANTI-TERRORISM complex networks terrorist activity network vertex centrality. 网络分析 恐怖活动 网络社区 恐怖组织 频谱分析 聚类分析 二分网络 实证分析
  • 相关文献

参考文献2

二级参考文献27

  • 1L. Chen, R. S. Wang, and X. S. Zhang, Biomolecular Networks: Methods and Applications in Systems Biology, John Wiley and Sons, Hoboken, N J, 2009. 被引量:1
  • 2R. Albert and A. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 2002, 74: 47-97. 被引量:1
  • 3M. Girvan and M. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci., 2002, 99: 7821-7826. 被引量:1
  • 4G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 2005, 435: 814-818. 被引量:1
  • 5A. Lancichinetti, S. Fortunato, and J. Kertesz, Detecting the overlapping and hierarchical commu- nity structure in complex networks, New J. Phys., 2009, 11: 033015. 被引量:1
  • 6S. Zhang, R. S. Wang, and X. S. Zhang, Uncovering fuzzy community structure in complex net- works, Phys. Rev. E, 2007, 76: 046103. 被引量:1
  • 7R. S. Wang, S. Zhang, Y. Wang, etal. Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures, Neurocomputing, 2008, 72: 134-141. 被引量:1
  • 8J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a Potts model, Phys. Rev. Lett., 2004, 93(21): 218701. 被引量:1
  • 9M. Rosvall and C. Bergstrom, An information-theoretic framework for resolving community structure in complex networks, Proc. Natl. Acad. Sci., 2007, 104: 7327-7331. 被引量:1
  • 10M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci., 2008, 105: 1118-1123. 被引量:1

共引文献11

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部