摘要
本文研究涉及差分算子的亚纯函数的唯一性问题,得到一个唯一性定理:设f是一个级不小于2的有限级整函数,η是非零复数,a(z)是不恒等于0的整函数,满足ρ(a)<ρ(f)和λ(f-a)<ρ(f).若f-a与Δnηf-a(n=1或2)CM分担0,则f(z)是整数级的,且ρ(a)=1或ρ(a)≥ρ(f)-1,f(z)=a(z)+[Δnηa(z)-a(z)]eA(z),其中A(z)是一个次数和ρ(f)相等的多项式.
In this paper,we show a uniqueness theorem on meromorphic functions related to their difference operators: if f is an entire function whose order is no less than 2 and η is a nonzero complex number,a( z) is a nonzero entire function satisfying the following conditions: 1) ρ( a) ρ( f) and λ( f- a) ρ( f),2) f- a and Δnηf- a( n =1,2) share 0 CM,then the order of f is an integer and ρ( a) = 1 or ρ( a) ≥ ρ( f)- 1,f( z) = a( z) + [Δnηa( z)-a( z) ]eA( z),where A( z) is a polynomial with degree ρ( f).
出处
《数学理论与应用》
2015年第1期1-8,共8页
Mathematical Theory and Applications
关键词
整函数
差分算子
CM分担
唯一性
Meromorphic function Difference operator CM share Uniqueness