期刊文献+

胶束增强陶瓷膜处理镧离子废水的研究 被引量:2

Removal of La(Ⅲ)ions from aqueous solution with micellar-enhanced ultrafiltration by ceramic membrane
下载PDF
导出
摘要 将十二烷基硫酸钠 (SDS) 与孔径5 nm的陶瓷膜结合,探索胶束增强陶瓷膜法处理镧离子废水的可行性。考察了SDS浓度、跨膜压差 (TMP)、溶液pH值等因素对陶瓷膜过滤性能的影响。结果表明,随着SDS浓度的增大,陶瓷膜对La^3+ 的截留率从70% 增大到99.9%;当SDS浓度大于临界胶束浓度 (CMC) 后,膜对La^3+ 的截留率略有降低,大约维持在95%-97% 左右;膜通量则随SDS浓度增大先减小后增大,最后趋于65 L·m^-2·h^-1·bar[换算成MPa]-1。随着TMP提高,膜通量基本呈线性关系增大,膜对SDS和La^3+ 的截留率略增大。随着溶液pH的升高,渗透通量略有下降,膜对La^3+ 和SDS的截留率均显著增加。采用体积浓度为0.5% 的稀硝酸清洗污染的陶瓷膜,膜的纯水通量可恢复到95% 以上,重复性好。 The feasibility of the micellar-enhanced ultrafiltration(MEUF) process for removing La^3+ using the anionic surfactant sodium dodecyl sulfate (SDS) was evaluated. The effects of different parameters on the separation performance of 5 nm ceramic membrane were investigated including the concentration of SDS, transmembrane pressure (TMP) and solution pH. It was found that when the SDS concentration exceeded the critical micelle concentration(CMC), the rejection of La^3+ was among 95%-97% with little change. The flux increased firstly and then decreased with the increase of SDS concentration and finally tended to 65 L/(m^2 · h). The permeate flux increased linearly and the rejection of La^3+ and SDS had a slight increase with the increasing of TMP. With increasing solution pH, the permeate flux decreased slightly, but the rejections of La^3+ and SDS increased significantly. Finally, the ceramic membrane was washed with 0. 5% (vol%) HNOa and the pure water flux could be recovered above 95% effectively, and the flux of the ceramic membrane had a good reproducibility.
出处 《膜科学与技术》 CAS CSCD 北大核心 2015年第2期57-63,共7页 Membrane Science and Technology
基金 国家自然科学基金项目(21125629 21306079) "863"重大项目课题(2012AA03A606) 江苏省高校自然科学基金(13KJB530005) 江苏省工业支撑项目(BE2011185)
关键词 陶瓷膜 胶束增强 十二烷基硫酸钠 镧离子 废水 ceramic membrane MEUF SDS La^3+ wastewater
  • 相关文献

参考文献2

二级参考文献31

  • 1张永锋,许振良.络合超滤过程处理重金属工业废水[J].化学工程,2004,32(3):54-58. 被引量:22
  • 2Bayhan Y K, Keskinler B, Cakici A, Levent M Akay G, 2001. Removal of divalent heavy metal mixtures from water by Saccharomyces cerrevisiae using cross flow filtration. Water Research, 35(9): 2192-2200. 被引量:1
  • 3Castelblanque J, Salimbeni,2004. NF and RO membranes for the recovery and reuse of water and concentrated metallic salts from waste water produced in the electroplating process. Desalination, 167: 65-73. 被引量:1
  • 4Chang F C, Lo S L, Ko C H, 2007. Recovery of copper and chelating agents from sludge extracting solutions. Separation and Purification Technology, 53: 49-56. 被引量:1
  • 5Chen G H, 2004. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38:11- 41. 被引量:1
  • 6Churchill S A, Walters J V, Churchill P F, 1995. Sorption of heavy metals by prepared bacterial cell surfaces. Journal of Environmental Engineering-ASCE, 121(10): 706-711. 被引量:1
  • 7Couillard D, 1994. The use of peat in wastewater treatment. Water Research, 28(6): 1261-1274. 被引量:1
  • 8Juang R S, Shiau R C, 2000. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165: 159-167. 被引量:1
  • 9Kadirvelu K, Thamaraiselvi K, Namasivayam C, 2001. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 24(3): 497-505. 被引量:1
  • 10Kamitani T, Kaneko N, 2007. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan. Ecotoxicology and Environmental Safety, 66: 82-91. 被引量:1

共引文献8

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部