期刊文献+

基于A*OMP算法及其改进算法的宽带雷达信号稀疏分解 被引量:1

Sparse Decomposition of Broadband Radar Signals Based on A*OMP Algorithm and Its Improved Algorithm
下载PDF
导出
摘要 传统稀疏分解算法正交匹配追踪(OMP)算法里采用内积最大值来寻找最优原子,该方法容易陷入局部最优,为了弥补这一缺点,采用了新的算法:A*OMP算法,该算法使用A*搜索(即最佳优先搜索技术)寻找最优原子,该搜索方式寻找的最优原子具有全局最优性。实验表明相比传统OMP算法而言,该算法有效地提高了信号的重构精度。 In the traditional sparse decomposition algorithm——orthognal matching pursuit(OMP)algorithm,maximum inner product is used to find the optimal atom.The method is easy to fall into local optimization,in order to make up the shortcoming,a new algorithm is proposed in this paper:A*OMP algorithm,the algorithm uses A*search(the best first search technology)to find the optimal atom,the optimal atom searched by using the search way has global optimality.Experiments show that the algorithm effectively improves the reconstruction accuracy of signal compared with the traditional OMP algorithms.
作者 葛明 钱玲
机构地区 南京理工大学
出处 《舰船电子对抗》 2015年第1期65-69,共5页 Shipboard Electronic Countermeasure
关键词 稀疏分解 正交匹配追踪算法 雷达信号 sparse decomposition orthogonal matching pursuit algorithm radar signal
  • 相关文献

参考文献10

  • 1Justin Romberg.Compressive sensing by random convolution[J].SIAM Journal on Imaging Sciences,2009,2(4):1098-1128. 被引量:1
  • 2Elad M.Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing,2007,52(12):5695-5702. 被引量:1
  • 3Candes E J,Tao.Near optimal signal recovery from random projection:Universal encoding strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425. 被引量:1
  • 4Dechter R,Pearl J.Generalized best-first search strategies and the optimality of A*[J].ACM,1985(32):505-536. 被引量:1
  • 5Tropp J,Gilbert A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on information theory,2007,53(12):4655-4665. 被引量:1
  • 6Nazim Burak,Karahanoglua,Hakan Erdogana.A*Orthogonal matching pursuit:best-first search for compressed sensing signal recovery,Digital Signal Processing[J],2012,22(4):1051-2004. 被引量:1
  • 7Koenig S,Likhachev M,Liu Y,Furcy D.Incremental heuristic search in AI[J].AI Magzine,2004(25):99-112. 被引量:1
  • 8赵慧民,倪霄.压缩感知的冗余字典及其迭代软阈值实现算法[J].电路与系统学报,2013,18(1):59-64. 被引量:3
  • 9Jelinek F.Statistical Methods for Speech Recognition[M].Cambridge,MA,USA:MIT Press,1998. 被引量:1
  • 10Hart P E,Nilsson N J,Raphael B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Cybernetics,1968,SS-(2):100-107. 被引量:1

二级参考文献12

  • 1D Donoho. Compressed sensing [J]. IEEE Trans Inform Theory, 2006, 51(4): 1289-1306. 被引量:1
  • 2E Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans Inform, 2006, 52(2): 489-509. 被引量:1
  • 3M Rudelson, R Vershynin. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements [A]. In Proc. CISS 2006 (40th Annual Conference on Information Sciences and Systems) [C]. 2006. 被引量:1
  • 4S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale Ll-regularized least-squares problems with applications in signal processing and statistics [J]. Journal of Machine Learning Research, 2007, 7(8): 1519-1555. 被引量:1
  • 5J Tropp, A Gilbert. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Tram. Inform. Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 6Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries [J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219. 被引量:1
  • 7S Chen, D Donoho, M Saunders. Atomic decomposition by basis pursuit [J]. SIAMJ Sci Comput, 1999, 20: 33-61. 被引量:1
  • 8Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. 被引量:1
  • 9D Needell, R Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonai matching pursuit [J]. Found. Comput Math, 2009, 9(3): 317-334. 被引量:1
  • 10X Mei, LI Ling, Y Wu, E Blasch, L Bai. Minimum error bounded efficient LI tracker with occlusion detection [A]. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. 2011. 被引量:1

共引文献2

同被引文献6

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部