期刊文献+

基于稀疏环决策的天空背景红外弱小目标检测算法 被引量:3

Sparse Ring Decision Based Algorithm for Detecting Infrared Dim Target Against Sky Background
下载PDF
导出
摘要 针对天空背景红外图像中弱小目标检测的难题,分析了红外目标检测的模型,提出了基于稀疏环决策的目标检测算法。利用数学形态学滤波目标增强方法对图像进行背景抑制,而后采用恒虚警检测方法对滤波后图像进行自适应分割,从而获得候选目标点,然后计算各个候选目标点的局部自相似性描述子,对自相似性描述子归一化、分块之后得到稀疏环表示,利用相应的判断准则可以判别目标点与虚警点。实验结果表明,该算法应用于复杂云层背景弱小红外目标图像能够得到较理想的结果,与移动管道滤波方法相比,能有效区别目标点与固定云层杂波干扰,并且虚警率低,易于实现。 Aiming at the problem of dim target detection in infrared images with sky background,the detection model of infrared targets is analyzed and a detection algorithm was put forward based on the sparse ring decision. The morphological filtering target enhancement method was used for background suppression,then the Constant False Alarm Rate( CFAR) detection method was adopted for image adaptive segmentation to get candidate target points. The Local Self-Similarity( LSS) descriptors of candidate target points were calculated out,and sparse ring was obtained by normalizing the LSS descriptors and partitioning. By means of appropriate criterion,the target point and false alarm points can be distinguished. Experiments show that: 1) The algorithm can get ideal results when applied to infrared images with dim and small target against clutter cloud background; and2) Comparing with moving pipeline filter algorithm,it has lower false alarm rate and is easier for implementation.
出处 《电光与控制》 北大核心 2015年第4期32-35,53,共5页 Electronics Optics & Control
基金 国家自然科学基金(61273075)
关键词 目标检测 红外目标 弱小目标 稀疏环 形态学滤波 恒虚警 target detection infrared target dim target sparse ring morphological filtering CFAR
  • 相关文献

参考文献5

二级参考文献22

  • 1李吉成,沈振康,李秋华.强背景杂波条件下运动的弱小目标检测方法[J].红外与激光工程,2005,34(2):208-211. 被引量:12
  • 2崔宁周,谢维信,余雄南.分布式CFAR信号检测[J].西安电子科技大学学报,1995,22(2):109-114. 被引量:2
  • 3彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 4Nishiguchi, Kobayashi M, Ichikawa A. Small target detection from image sequences using recursive max filter[C]//SPIE. 1995, 2561: 153-165. 被引量:1
  • 5Barniv Y. Dynamic programming solution for detection dim moving targets[J]. IEEE Trans AES, 1985, 21 ( 1 ): 144-155. 被引量:1
  • 6Koch W, Van K G. Multiple Hypothesis Track Maintenance with Possibly Unresolved Measurements[J]. IEEE Trans on AEIS, 1997, 33(3): 883-892. 被引量:1
  • 7[1]Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing, Analysis, and Machine Vision. 2nd ed.[M]. Brooks/Cole: Thomson Asia Pte Led, 2002. 559-599. 被引量:1
  • 8ZHANG Wei,CONG Ming-yu,WANG Li-ping.Algorithm for optical weak small targets detection and tracking:Review[J].IEEE International Conference on Neural Networks & Signal Processing,2003,12:643-647. 被引量:1
  • 9YANG Li-rui,DING Run-tao.Morphological filters withmultiple structuring elements[C].China 1991 International Conference on Circuits and Systems,1991:812-815. 被引量:1
  • 10WANG Gan,Iniqo Rafael M,McVev Euqene S.Asingle pixel target detection and tracking system[C].International Conference on Pattern Recognition.1990,1:99-103. 被引量:1

共引文献84

同被引文献16

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部