期刊文献+

光学影像纹理信息在林业领域的最新应用进展 被引量:19

The latest applications of optical image texture in forestry
下载PDF
导出
摘要 随着光学卫星影像空间分辨率的不断提高,影像纹理特征的重要性日益凸显。然而,纹理是一个非常复杂的空间属性,会随着太阳/观测角度、地形、感兴趣目标及其所处环境的不同而发生显著的变化。此外,不同纹理变量的选择及相应输入参数的设置,如窗口大小、像元间距、方向以及量化等级等都可能在一定程度上决定着影像纹理的利用价值。如何有效利用纹理量及其优化组合是一个值得深入探讨的问题。鉴于此,本文首先全面回顾了影像纹理特征在森林分类、森林结构参数反演以及森林生物量与碳储量的遥感估算等方面的最新研究与应用,并从不同角度肯定了光学影像纹理在林业遥感领域的应用潜力。此外,从纹理变量及其4大输入参数的选择和最优变量组合的判别方面,总结并剖析了当前研究领域中所存在的关键问题,权衡利弊并给出了相应的建议,为相关研究人员将影像纹理信息更有效地应用于林业领域提供参考。 Image texture is becoming more and more important with the increasing spatial resolution of optical satellite images. However, it is a very complex spatial attribute that can vary significantly with solar/ viewing geometries, topographic conditions, and the object of interest as well as its location. Besides, the selection of texture variables and the set of their corresponding input parameters, for instance, window sizes, inter-pixel distances, directions and quantization levels, determine the efficiency of image texture. How to apply texture variables and optimize their combination is worth further studying. Therefore, we firstly reviewed the latest researches and applications of image texture in forest classification, inversion of stand structure parameters, and estimation of forest biomass and carbon storage, and prospected the potential of image texture in the remote sensing of forestry from different aspects. In addition, we summarized the critical problems in the current research field based on the selection and optimal combination of texture variables and their input parameters. Some suggestions have also been proposed for further effective applications of image texture in the field of forestry.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2015年第3期1-12,共12页 Journal of Beijing Forestry University
基金 中央高校基本科研业务费专项(TD 2013--1) 国家自然科学基金项目(41301357)
关键词 光学影像 纹理 灰度共生矩阵 最优组合 optical images texture gray level co-occurrence matrix optimal combination
  • 相关文献

参考文献123

  • 1CASTILLO-SANTIAGO M A,RICKER M,DE JONG B H J.Estimation of tropical forest structure from SPOT-5 satellite images[J].International Journal of Remote Sensing,2010,31(10):2767-2782. 被引量:1
  • 2DORREN L K A,MAIER B,SEIJMONSBERGEN A C.ImprovedLandsat-based forest mapping in steep mountainous terrain usingobject-based classification[J].Forest Ecology and Management,2003,183(1-3):31-46. 被引量:1
  • 3HALL R J,SKAKUN R S,ARSENAULT E J,et al.Modelingforest stand structure attributes using Landsat ETM+data:application to mapping of aboveground biomass and stand volume[J].Forest Ecology and Management,2006,225(1-3):378-390. 被引量:1
  • 4WOLTER P T,TOWNSEND P A,STURTEVANT B R.Estimation of forest structural parameters using 5 and 10 meterSPOT-5 satellite data[J].Remote Sensing of Environment,2009,113(9):2019-2036. 被引量:1
  • 5TROTTER C M,DYMOND J R,GOULDING C J.Estimation oftimber volume in a coniferous plantation forest using Landsat TM[J].International Journal of Remote Sensing,1997,18(10):2209-2223. 被引量:1
  • 6WULDER M A,LEDREW E F,FRANKLIN S E,et al.Aerialimage texture information in the estimation of northern deciduousand mixed wood forest leaf area index(LAI)[J].Remote Sensingof Environment,1998,64(1):64-76. 被引量:1
  • 7LECKIE D G,GOUGEON F A,TINIS S,et al.Automated treerecognition in old growth conifer stands with high resolution digitalimagery[J].Remote Sensing of Environment,2005,94(3):311-326. 被引量:1
  • 8LECKIE D G,TINIS S,NELSON T,et al.Issues in speciesclassification of trees in old growth conifer stands[J].CanadianJournal of Remote Sensing,2005,31(2):175-190. 被引量:1
  • 9ARENAS-CASTRO S,JULIEN Y,JIMNEZ-MUOZ J C,et al.Mapping wild pear trees(Pyrus bourgaeana)in Mediterraneanforest using high-resolution Quick Bird satellite imagery[J].International Journal of Remote Sensing,2012,34(9-10):3376-3396. 被引量:1
  • 10CARLEER A,WOLFF E.Exploitation of very high resolutionsatellite data for tree species identification[J].PhotogrammetricEngineering and Remote Sensing,2004,70(1):135-140. 被引量:1

二级参考文献14

  • 1李崇贵,赵宪文.确定监测区域建立森林郁闭度估测方程最优样地的研究[J].北京林业大学学报,2005,27(6):24-28. 被引量:8
  • 2陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 3Atkinson P M, Lewis P. 2000. Geostatistical classification for remote sensing : an introduction. Computers & Geosciences, 26(4) : 361 -371. 被引量:1
  • 4Benz U C, Hofmann P, Willhauck G, et al. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for G/S-ready information. ISPRS Journal of Photogrammetry and Remote Sensing 58(3/4) : 239 -258. 被引量:1
  • 5Berberoglu S,Lloydb C D,Atkinsonb P M,et al. 2000. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Computers & Geosciences, 26 (4) : 385 - 396. 被引量:1
  • 6Chubey M S,Franklin S E,Wulder M A. 2006. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering & Remote Sensing, 72(4) : 383 -394. 被引量:1
  • 7Haralick R M,Shanmugam K, Dinstein I H. 1973. Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics ,3 (6) : 610 - 621. 被引量:1
  • 8Kayitakire F, Hamel C, Defoumy P. 2006. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment, 102(3/4) : 390 -401. 被引量:1
  • 9Levesque J,King D J. 2003. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sensing of Environment, 84 (4) : 289 - 603. 被引量:1
  • 10Moskal L M, Franklin S E. 2004. Relationship between airborne multispectral image texture and aspen defoliation. International Journal of Remote Sensing, 25 (14) : 2701 - 2711. 被引量:1

共引文献25

同被引文献231

引证文献19

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部