期刊文献+

基于神经网络的振荡模式分析及其应用 被引量:2

Analysis of oscillatory pattern based on neural network and its applications
原文传递
导出
摘要 振荡现象以动态形式普遍存在于神经系统中,并且与大脑的信息处理、传递和整合、巩固记忆等高级认知活动密切相关。神经振荡的特定活动模式往往关联认知功能及其变化,因此如何量化分析神经振荡活动模式成为了计算神经生物学的研究热点之一。结合作者实验室近年来的研究工作,本文对在神经生物学和认知科学研究中常用的多种分析算法进行了详细而全面的综述,并试图按照度量指标及耦合或同步方式的差异进行归类。通过算法比较,给出计算特点及算法适用情形。最后对将来有潜在应用价值的几种多维算法进行了深入的探讨。 Neural oscillatory phenomenon generally exists in the nervous system through a dynamic form. It plays a very important role in the brain, especially in the higher cognitive activities, such as information processing, transfer and integration, consolidating memory and so on. Furthermore, the specific activity pattern of neural oscillations is often associated with cognitive functions and their alterations. Accordingly, how to quantitatively analyze the pattern of neural oscillations becomes one of the fundamental issues in the computational neuroscience. In this review, we addressed a variety of analytic algorithms, which are commonly employed in our recent studies to investigate the issues of neurobiology and cognitive science. In addition, we tried to classify these analytic algo- rithms by distinguishing their different metrics, synchronization for potential application have also been discussed. and coupling modes. Finally, multidimensional analytic algorithms
出处 《生理学报》 CAS CSCD 北大核心 2015年第2期143-154,共12页 Acta Physiologica Sinica
基金 supported by the National Natural Science Foundation of China(No.31171053 11232005)
关键词 神经网络 振荡分析算法 信息流 振荡同步 neural network analytic algorithms neural information flow oscillatory synchronization
  • 相关文献

参考文献43

  • 1Berger H, Gray CM. Uber das Elektroenkephalogramm des Menschen. Arch Psychiat Nervenkr 1929; 87(1): 527-557. 被引量:1
  • 2Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004; 304(5679): 1926-1929. 被引量:1
  • 3Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci 2011; 12(2): 105-118. 被引量:1
  • 4Smith VA, Yu J, Smulders TV, Hartemink AJ, Jarvis ED. Computational inference of neural information flow networks. PloS Comput Bioi 2006; 2(11): 1436-1449. 被引量:1
  • 5Tang XW (唐孝威), Guo AK, Wu S, Zhai J, Liang PJ, Yang BX. Neuroinformatics and Computational Neuroscience. Hangzhou: Zhejiang Science and Technology Publishing House, 2012,129-146. 被引量:1
  • 6Thomson DJ. Spectrum estimation and harmonics analysis. Proceeding of the IEEE 1982; 70(9): 1055-1096. 被引量:1
  • 7武鹏鹏,赵刚,邹明.基于多窗谱估计的改进谱减法[J].现代电子技术,2008,31(12):150-152. 被引量:20
  • 8Xu X, An L, Mi X, Zhang T. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melaminetreated rats. PloS One 2013; 8(10): e77796. 被引量:1
  • 9Zheng CG, Zhang T. Alteration of phase-phase coupling between theta and gamma rhythms in a depression-model of rats. CognNeurodynamics2013; 7(2): 167-172. 被引量:1
  • 10Pincus SM. Approximate entropy as a measure of system complexity. Proc NatiAcad Sci USA 1991; 88: 2297-2301. 被引量:1

二级参考文献12

  • 1吴红卫,吴镇扬,赵力.基于多窗谱的心理声学语音增强[J].声学学报,2007,32(3):275-281. 被引量:12
  • 2LI Yan LI XiaoLi OUYANG GaoXiang GUAN XinPing.Information flow among neural networks with Bayesian estimation[J].Chinese Science Bulletin,2007,52(14):2006-2011. 被引量:1
  • 3[1]Pincus S M. Approximate entropy as a mesure of system complexity. Proc. Natl. Acad. Sci. USA. 1991,88: 2297- 2301. 被引量:1
  • 4[2]Richman Joshua S,J. Randall Moorman. Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Physio., 2000,278:H2039~2049. 被引量:1
  • 5Hu Yi, Loizou P C. Speech Enhancement Based on Wavelet Thresholding the Multitaper Spectrum[J]. IEEE Trans. on Speech and Audio Processing,2004,12(1) :59 - 67. 被引量:1
  • 6Cappe O. Elimination of the Musical Noise Phenomenon with the Ephraim and Malah Noise Suppressor [J]. IEEE Trans. on Speech and Audio Processing, 1994,2(2):345- 349. 被引量:1
  • 7Thomson D J. Spectrum Estimation and Harmonic Analysis [J]. Proc. IEEE,1982,70(9) :1 055 - 1 096. 被引量:1
  • 8Hu Yi,Loizou P C. Incorporating a Psychoacoustical Model in Frequency Domain Speech Enhancement[J]. IEEE Signal Processing Letters,2004,11 (2) : 270 - 273. 被引量:1
  • 9Boll S F. Suppression of Acoustic Noise in Speech Using Spectral Subtraction[J]. IEEE Trans. on Acoustics,Speech, and Signal Processing,1979,27(2) :113 - 120. 被引量:1
  • 10Berouti M, Schwartz R, Makhoul J. Enhancement of Speech Corrupted by Acoustic Noise[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1979,4 : 208 - 211. 被引量:1

共引文献52

同被引文献2

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部