期刊文献+

光敏色素信号通路中磷酸化修饰研究进展 被引量:10

Research Progress in Phosphorylation Modification of Phytochrome Signaling
原文传递
导出
摘要 光是植物的唯一能量来源,植物在进化过程中产生不同的光敏色素来感知光信号。光信号通路中元件通常被特异翻译后修饰调节。光敏色素是一种自磷酸化的丝氨酸/苏氨酸蛋白激酶,可以被一些蛋白磷酸酶去磷酸化。通过对光敏色素A(phy A)和光敏色素B(phy B)的自磷酸化位点研究,发现自磷酸化对光敏色素的功能及其介导的信号通路起着非常重要的作用。光激活的光敏色素诱导光敏色素作用因子(PIF)磷酸化,这对于PIF的正常降解及光形态建成的起始是必需的。该文主要介绍了光敏色素信号通路磷酸化修饰的最新进展,以期为深入研究光敏色素信号转导机制提供参考。 Light is the unique source of energy for plants. Plants have evolved a variety of photoreceptors to sense light information. The elements in the light signaling pathway are mainly regulated by several post-translational modifications such as phosphorylation and dephosphorylation. Photochromes, the known auto-phosphorylating serine/threonine kinases, can be dephosphorylated by a few protein phosphatases. Investigation of the autophosphorylation sites in phy- tochrome A (phyA) and phytochrome B (phyB) has revealed that the autophosphorylation of phy is essential for their function and plays a significant role in regulating phytochrome-mediated signaling. The phosphorylation of phyto- chrome-interacting factor (PIF) induced by the light-activated photoreceptor is Critical for PIF degradation and photo- morphogenesis initiation. This review focuses on the recent progress in understanding phosphorylation modification in phytochrome signaling, providing valuable information for further research in this field.
出处 《植物学报》 CAS CSCD 北大核心 2015年第2期241-254,共14页 Chinese Bulletin of Botany
基金 国家自然科学基金(No.91017002 No.31070247 No.31271460)
关键词 光敏色素 光敏色素作用因子 磷酸化修饰 phytochrome, PIF, phosphorylation modification
  • 相关文献

参考文献3

二级参考文献153

  • 1赵玉锦,童哲,陈华君,金幼菊.内源植物激素与光敏核不育水稻农垦58S育性的关系[J].Acta Botanica Sinica,1996,38(12):936-941. 被引量:42
  • 2AI-Sady, B., Kikis, E.A., Monte, E., and Quail, P.H. (2008). Mechanis- tic duality of transcription factor function in phytochrome sig- naling. Proc. Natl Acad. Sci. U S A. 105, 2232-2237. 被引量:1
  • 3Al-Sady, B., Ni, W., Kircher, S., Schafer, E., and Quail, P.H. (2006). Photoactivated phytochrome induces rapid PIF3 phosphoryla- tion prior to proteasorne-rnediated degradation. Mol. Cell. 23, 439-446. 被引量:1
  • 4Bae, G., and Choi, G. (2008). Decoding of light signals by plant phy- tochromes and their interacting proteins. Annu. Rev. Plant Biol. 59, 281-311. 被引量:1
  • 5Ballare, C.L. (2009). Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32, 713-725. 被引量:1
  • 6Ballare, C.L (2011). Jasmonate-induced defenses: a tale of intelli- gence, collaborators and rascals~ Trends Plant Sci. 16, 249-257. 被引量:1
  • 7Bauer, D., et al. (2004). Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light sig- naling in Arabidopsis. Plant Cell. 16, 1433-1445. 被引量:1
  • 8Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12, 514-521. 被引量:1
  • 9Child, R., and Smith, H. (1987). Phytochrome action in light-grown mustard: kinetics, fluence-rate compensation and ecological sig- nificance. Planta. 172, 219-229. 被引量:1
  • 10Cole, B., Kay, S.A., and Chory, J. (2011). Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabi- dopsis. Plant J. 65, 991-1000. 被引量:1

共引文献48

同被引文献96

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部