期刊文献+

MRNN:一种新的基于改进型递归神经网络的WSN动态建模方法:应用于故障检测 被引量:5

MRNN:A novel wireless sensor network dynamic modeling method for fault detection using modified recurrent neural network
下载PDF
导出
摘要 提出了一种适用于无线传感器网络WSN的故障检测方法,该方法运用改进的递归神经网络MRNN为WSN的节点、节点的动态特性以及节点间的关系建立相关模型,对WSN节点进行识别和故障检测。MRNN的输入选择建模节点的先前输出值及其邻居节点的当前及先前输出值,模型基于一种新的改进的反向传播型神经网络,该神经网络的输入以及传感器网络的拓扑结构基于通用的非线性传感器模型。仿真实验将MRNN方法与卡尔曼滤波法进行了全面的比较。实验表明,MRNN在置信因子较小的情况下与卡尔曼滤波方法相比有较高的故障检测精度。 We present a novel sensor node fault detection method for wireless sensor network (WSN). Modified Recurrent Neural Network (MRNN) is used to model sensor nodes, the nodes' dy- namics, and the interconnections with other sensor network nodes. An MRNN modeling approach is used for sensor node identification and fault detection in WSN. The input to the MRNN chooses those that include previous output samples of the modeling sensor nodes, and the current and previous output samples of the neighboring sensors. The model is based on a new structure of a back-propagation type neural network. The input to the MRNN and the topology of the network are based on a general nonlinear sensor model. Simulation results demonstrate the effectiveness of the proposed scheme and the MRNN method has higher failure detection accuracy in the case with smaller confidence factors compared with the Kalman filter method.
作者 黄旭
出处 《计算机工程与科学》 CSCD 北大核心 2015年第4期711-718,共8页 Computer Engineering & Science
基金 山东省高等学校科技计划项目(J13LN55) 济南市高校院所自主创新科技计划项目(201303017) 山东英才学院校级科研课题(12YCYBZR01)
关键词 故障检测 建模 递归神经网络 无线传感器网络 fault detection modeling recurrent neural networks wireless sensor network
  • 相关文献

参考文献3

二级参考文献69

  • 1陈冬岩.基于多信道的MAC层协议在无线传感器网络中的应用[J].山东大学学报(工学版),2009,39(1):41-49. 被引量:7
  • 2李东生,向勇,史美林.基于多信道的自组织网络功率控制方法[J].通信学报,2006,27(10):31-37. 被引量:4
  • 3Couto D D, Aguayo D, Bicker J, et al. A High-Throughput Path Metric for Multi-Hop Wireless Routing[C]//Proc of the ACM Mobicom Conf,2003:134-146. 被引量:1
  • 4So J, Vaidya N. Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using a Single Transceiver[C]//Proc of the 5th ACM Int' l Symp on Mobile Ad Hoc Networking and Computing, 2004..222-233. 被引量:1
  • 5Zhou G, Huang C, Yan T, et al. Mmsn: Multi-Frequency Media Access Control for Wireless Sensor Networks[C]// Proc of INFOCOM'06,2006 : 1-13. 被引量:1
  • 6Gnawali O, Fonseea R, Jamieson K, et al. Collection Tree Protocol[C]//Proc of InSenSys'09,2009:1-14. 被引量:1
  • 7http://www, tinyos, net/tinyos-2, x/tos/lib/net/ctp. 被引量:1
  • 8http..//www, tinyos, net/tinyos-2, x/doc/txt/tep123, txt. 被引量:1
  • 9Levis P, Patel N, Culler D. et al. Trickle: A Self-Regulating Algorithm for Code Maintenance and Propagation in Wireless Sensor Networks[C]//Proc of the USENIX NSDI Conf,2004:15-28. 被引量:1
  • 10Fonseca R, Gnawali O, Jamieson K, et al. Four Bit Wireless Link Estimation[C]//Proc of the 6th Workshop on Hot Topics in Networks, 2007. 被引量:1

共引文献65

同被引文献75

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部