期刊文献+

异音检测的机器学习方法及其在电机质检中的应用 被引量:6

Machine Learning Method of Abnormal Sound Detection and Application In Quality Inspection of Motor
下载PDF
导出
摘要 在大批量小型电机生产线上,普遍采用的听音质检工序需要大量训练有素的工人。针对电机质检工序声音信号的统计特征及质检工艺的特点,提出基于一类学习的异响检测的方法。该方法以正常样本为基础建立质检判别函数,避免了其他分类算法要求训练样本类别全面和覆盖广泛的条件。给出了该方法的实现过程,并通过大量实测样本验证了该方法的有效性。 In production lines of a large number of small motor,listening quality inspection procedure widely used needs a lot of well trained workers.According to the statistical characteristics of the sound signal in motor quality inspection process,a method based on one class of learning is presented to detect abnormal sound.With the foundation of normal samples,a discriminant function of quality inspection is established,which avoides to many conditions that comprehensive and extensive training samples required in other classification algorithms.The implementation of the method is presented,and the proposed method is validated by a large number of measured samples.
出处 《测控技术》 CSCD 2015年第4期55-58,62,共5页 Measurement & Control Technology
关键词 异音检测 支持向量机 电机故障 abnormal sound detection support vector machine motor faul
  • 相关文献

参考文献9

  • 1谷爱昱,欧阳乾.电机故障自动识别在电机生产线上的应用[J].微电机,2011,44(7):101-103. 被引量:6
  • 2Benko U, Petrovcic J, Juricic D, et al. Fault diagnosis of a vacuum cleaner motor by means of sound analysis [ J ]. Jour- nal of Sound and Vibration,2004,276 (3/4/5) :781 -806. 被引量:1
  • 3Kotani M, Ueda Y, Matsumoto H, et al. Acoustic diagnosis for blower with wavelet transform and neural networks [ C ]// Proceedings of IEEE International Conference on Neural Net- works. 1995:718 - 723. 被引量:1
  • 4Lin J. Feature extraction of machine sound using wavelet and its application in fault diagnosis[ J]. NDT & E International, 2001,34( 1 ) :25 -30. 被引量:1
  • 5Li W D,Parkin R M, Coy J, et al. Acoustic based condition monitoring of a diesel engine using self-organizing map net- works [ J ]. Applied Acoustics,2002,63 (7) : 699 - 711. 被引量:1
  • 6Hessel G,Schmitt W,Weiss F P. A neural-network approach for acoustic leak monitoring in pressurized plants with com-plicated topologies [ J ]. Control Engineering Practice, 1996,4 (9) :1271 - 1276. 被引量:1
  • 7Shlens J. A tutorial on principal component analysis [ EB/ OL]. 2014-04-03. arxiv, org/abs/1404.1100. 被引量:1
  • 8樊可清,倪一清,高赞明.基于SVM的桥梁状态监测方法[J].公路交通科技,2004,21(1):67-70. 被引量:6
  • 9Tax D M J, Duin R P W. Data domin description using sup- port vectors [ C]//Proceedings of European Symposium on Artificial Neural Networks. 1999:251 -256. 被引量:1

二级参考文献13

  • 1王秀杰,杨敏,崔海军.坝体振动信号的小波熵特征[J].水利水电技术,2009,40(4):23-26. 被引量:1
  • 2赵学智,陈文戈,叶邦彦.空调电机振动噪声的概率分布密度与假设检验[J].中国电机工程学报,2004,24(6):122-126. 被引量:14
  • 3吕锋,孙杨,文成林,句希源.基于小波分析的电机故障振声诊断方法[J].电机与控制学报,2004,8(4):322-325. 被引量:13
  • 4Cristina Cristall. Automatic Identification of Mechanical Defects in Electric Motors Applied to Production Line Reality [ C 1. CIMSA 2005 - IEEE Conference on Computational Intelligence for Measure- ment Systems and Applications. 2005:162 -167. 被引量:1
  • 5Y Reich. Machine Learning Techniques for Civil Engineering Problems[J] . Microcomputers in Civil Engineering, 1997, 12 (4): 295 -310. 被引量:1
  • 6Y Q Ni, X T Zhou, J M Ko, B S Wang. Vibration Based Damage Localization in Ting Kau Bridge using Probabilistic Neural Network [C] .Oxford, UK: Advances in Structural Dynamics, J M Ko and Y L Xu(eds.), Elsevier Science Ltd., 2000-02: 1069- 1076. 被引量:1
  • 7K Worden, A J Lane. Damage Identification using Support Vector Machines [J] . Smart Materials and Structures, 2001, 10 (3): 540-547. 被引量:1
  • 8David M J Tax, Robert P W Duin. Data Domain Description using Support Vectors [ C ] . Proceedings of European Symposium on Artificial Neural Networks ' 99, Brugge, 1999: 251-256. 被引量:1
  • 9B Peeters J Maeck, G De Rock. One Year Monitoring of Z24 Bridge:Environmental Influence Versus Damage Events [ C ] . In Proceedings of IMAC 18, The International Model Analysis Conference, 2000: 1570-1576. 被引量:1
  • 10弗莱彻著 游兆永 译.实用最优化方法[M].天津科技翻译出版公司,1990,7.. 被引量:1

共引文献10

同被引文献64

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部