期刊文献+

最大熵模型在公共交通分布预测中的应用 被引量:1

Application of Entropy-maximizing(EM)Model in Public Traffic Distribution Forecast
原文传递
导出
摘要 探讨了在无现状起讫点矩阵(O-D矩阵)的情况下如何应用最大熵模型较好地描述公交出行分布。利用公交定位技术和收费系统的有效信息,以乘客公交出行距离分布为约束条件,将对应状态数最多的出行分布视为预测的出行分布,以乘客的微观行为来反映公交分布的宏观状态。提出改进后熵模型的参数标定方法,并通过实例分析与佐佐木模型的预测结果进行比较,结果表明改进后的最大熵模型适用性较强,在公共交通分布预测中有很好的应用前景。 How to find a better way to describe the traffic distribution of public transport is studied in the paper by applying entropy-maximizing (EM) model without the present O--D Matrix. The effective information of global position system and bus charge system is used, the passenger trip distance distribution being a constraint condition, and the most frequent distribution is regarded as forecasted travel distribution, and the micro behavior of passengers is used to reflect the macro state of public transport distribution. The parameters calibration method is proposed after modification. Through analyzing and calculating to an actual project, the forecasting results are compared with those of Sasaki model. The results show that the application of improved EM model will have a promising prospect for the public transportation distribution forecast.
出处 《公路》 北大核心 2015年第4期179-183,共5页 Highway
关键词 城市交通 公共交通分布预测 最大熵原理 出行分布 乘客出行距离分布 公交IC卡 urban traffic public transportation distributiondistribution trip distance distribution public transportation ICforecast maximum entropy principle trip card
  • 相关文献

参考文献10

二级参考文献44

共引文献110

同被引文献443

引证文献1

二级引证文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部