期刊文献+

纳米二氧化硅/纳米纤维素复合材料制备及性能分析 被引量:16

Preparation and property analysis of cellulose nano-fibril and nano-silicon dioxide composites
下载PDF
导出
摘要 使用造纸方法快速成功的制备了纳米纤维素,纳米二氧化硅复合材料,对并材料的力学性能,热性能和吸湿性能进行了分析。研究结果表明:随着纳米二氧化硅的添加量逐步提高,纳米复合材料的理论密度逐渐下降,材料的拉伸性能和模量值都有大幅度的下降。材料热解的初始降解温度和热解活化能随着纳米二氧化硅质量分数的增多提升,当纳米二氧化硅质量分数为20%时,材料初始热解温度为280℃。纳米复合材料的含水率随着吸湿时间的延长而增加,且随着纳米二氧化硅添加量的增多,材料的最终含水率不断提高,当纳米二氧化硅质量分数为20%时,纳米复合材料的最终含水率约26%,纳米复合材料的表面接触角值仅为40.4°。该研究结果可为制备了纳米纤维素/纳米二氧化硅复合材料提供参考。 In this study, cellulose nano-fibril (CNF)/nano-silicon dioxide composites were prepared by mimicking the fast paper-making method. Mechanical property, thermal degradation and moisture adsorption of the composites were studied. The results revealed that tensile strength and modulus decreased as the loading of nano-silicon dioxide increased. The measured density value of CNF was 1 305.04 kg/cm^3 while the density of CNF with 20% nano-silicon was only 1 132.9 kg/cm^3. Tensile strength of CNF was 120.98 MPa and Modulus was 6.41 GPa. As the loading of nano-silicon dioxide increased, the tensile strength and modulus decreased sharply. When the content of nano-silicon dioxide reached 20%, the tensile of nano-composite was 49.41 MPa and the modulus was 2.96 GPa. The thermal stability of nano-composite was improved after adding nano-silicon dioxide. The onset cellulose decomposition temperature was around 270 C and weight loss in this period was around 4%. Although the onset decomposition temperature of nanocomposites did not increase, the lower weight loss indicated less initial decompositions in this stage. In addition, as the content of silica became higher, the char residue increased. The amount of dry plain CNF was 23%, noticeably smaller than that of corresponding CNF/nano-silicon dioxide samples which ranged from 30% and 65%. Degradation models including the Kissinger, modified Coats-Redfern and Flyrm-Wall-Ozawa (F-W-O) methods were utilized to calculate the activation energy. The Kissinger method led to an apparent activation energy ranging from 150 to 225 for all films. NFC with inorganic silica normally showed a higher activation energy than the control, high clay content also resulted in high activation energy. Results from the modified Coats-Redfern and F-W-O methods were similar (activation energy ranged from 180 to 220) to the observations. Nano-silicon dioxide provides barrier to the oxygen which leads to an improvement in flame retardant property. Limiting oxygen index of the tested CNF was 2
出处 《农业工程学报》 EI CAS CSCD 北大核心 2015年第7期299-303,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家林业公益行业科研专项"木质纤维化学材料及功能化技术"(201104004)
关键词 纳米复合材料 纳米纤维素 力学性质 纳米二氧化硅 热性能 吸湿性 nanocomposites nano-fibers mechanical properties nano-silicon dioxide thermal properties moisture absorption
  • 相关文献

参考文献18

  • 1Su Hungwen, Chen Wenchang. High refractive index polyimide-nanocrystalline-titania hybrid optical materials[J]. Journal of Materials Chemistry, 2007, 18: 1139-1145. 被引量:1
  • 2Gabr M H, Phong N T, Abdelkareen M A, et al. Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites[J]. Cellulose, 2013, 20(2): 819-826. 被引量:1
  • 3Cerruti P, Ambrogi V, Postiglione A, Rychly, et al. Morphological and thermal properties of cellulose-montmorillonite nanocomposites[J]. Biomacromolecules, 2008, 9(11): 3004-3013. 被引量:1
  • 4Chen J M, Yan N. Hydrophobization of bleached softwood kraft fibers via adsorption of organo-nanoclay[J]. Bioresource, 2012, 7: 4132-4149. 被引量:1
  • 5Gilman J W. Flammability and themal stability studies of polymer layered-silica (clay) nanocomposites[J]. Applied clay Science, 1999, 15(1/2): 31-49. 被引量:1
  • 6Dufresne A, Cavaille J, Vignon M R. Improvement of starch film performances using cellulose microfibrils[J] Macromolecules, 1998, 31(8): 2693-2696. 被引量:1
  • 7王云芳,郭增昌,王汝敏.纳米二氧化硅的表面改性研究[J].化学研究与应用,2007,19(4):382-385. 被引量:50
  • 8Maeda H, Nakajima M, Hagiwara T, et al. Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites[J]. Journal of Material Science, 2006, 41(17): 5646-5656. 被引量:1
  • 9Ashori A, Sheykhnazari S, Tabarsa T, et al. Bacterial cellulose/silica nanocomposites: Preparation and characterization[J]. Carbohydrate Polymers, 2012, 90(1): 413-418. 被引量:1
  • 10Yeh J T, Chen C L, Huang K S. Synthesis and properties of chitosan/SiO2 hybrid materials[J]. Material Letter, 2007, 61(3): 1292-1295. 被引量:1

二级参考文献25

  • 1洪立福,金鑫.超细二氧化硅的制备与改性[J].北京化工大学学报(自然科学版),2004,31(5):69-72. 被引量:23
  • 2董志军,颜家保,涂红兵,宋子逵,范晓霞.二氧化硅气凝胶隔热复合材料的制备与应用[J].化工新型材料,2005,33(3):46-48. 被引量:28
  • 3刘朝辉,苏勋家,侯根良,王德朋.超级绝热材料SiO_2气凝胶的制备及应用[J].化工新型材料,2005,33(12):21-23. 被引量:7
  • 4徐维忠.耐火材料[M].北京:冶金工业出版社,1995:171-185. 被引量:6
  • 5XU K,LI Z H,DUAN X J,et al.Study on nano-prorous silica insulation material[C] //The 3rd Asian Silicon Symposium.Hangzhou China:China Association of Fluorine and Silicon Industry,2010:62. 被引量:1
  • 6PAJONK G.Transparent silica aerogels[J].Journal of Non-crystalline Solids,1998,(225):307-314. 被引量:1
  • 7FRICKE J.Aerogels-highly tenuous solids with fascinating properties[J].Journal of Sol-gel Science and Technology,1998,13:299-303. 被引量:1
  • 8Liu Y L,Wei W L,Hsu K Y,et al.Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis[J].Thermochimica Acta,2004,412:139-147. 被引量:1
  • 9Macan J,Ivankovi H.Ivankovi M,et al.Study of cure kinetics of epoxy-silica organic-inorganic hybrid materials[J].Thermochimica Acta,2004,414:219-225. 被引量:1
  • 10Valter C,Cinzia D V.Nanostructured hybrid materials from aqueous polymer dispersions[J].Advances in Colloid and Interface Science,2004,(108 -109):167-185. 被引量:1

共引文献52

同被引文献138

引证文献16

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部