期刊文献+

基于MLR的公交车行程时间预测模型 被引量:5

Bus Travel Time Forecasting Using MLR Model
下载PDF
导出
摘要 分析了站间距离、上下车乘客数、停车延误等因素与公交车行程时间存在的线性映射关系,推导并建立了多元线性回归(MLR)模型,利用大连市21路公交车的数据,对模型进行了标定和检验,并对线性模型的误差来源进行了详细的分析和探究.重点探讨了行驶车速-行程时间线性相关性、乘客数-停站时间线性相关性、延误和行程时间线性相关性,解释了MLR标定的系数的含义,并阐述了导致MLR模型产生误差的来源,分析了非线性因素的影响.研究结果表明多元MLR模型能够解释影响因素与行程时间之间的线性因果关系,可以用来估计和预测公交车行程时间. The linear relationship between bus travel time are analyzed and the influencing factors such as stop distance, the number of passengers getting on or off and stop delay to deduce and build a multi-linear regres- sion (MLR) model which was calibrated and tested by using the data of Bus No. 21 in Dalian. The error source of the linear model is discussed in detail. The analysis is focused on the linear relationship between speed and travel time ( exclusing dwell time), the number of pessengers and dwell time, delay and travel time. Thus the exact meaning of the MLR model coefficien can be explained, and the error source especially the effects of the nolinear factors while building the MLR model can be traced. The result shows that the MLR model can account for a portion of the linear relationship between the influencing factors and travel time, and it can be used to estimate or forecast bus travel time.
作者 汪磊 左忠义
出处 《大连交通大学学报》 CAS 2015年第2期1-5,共5页 Journal of Dalian Jiaotong University
基金 辽宁省教育厅科学研究计划资助项目(L2013190)
关键词 智能交通 行程时间 多元线性回归 公共交通 预测 误差分析 intelligent transportation travel time multi-linear regression public transport forecasting error analysis
  • 相关文献

参考文献10

二级参考文献19

  • 1温惠英,徐建闽,傅惠.基于灰色关联分析的路段行程时间卡尔曼滤波预测算法[J].华南理工大学学报(自然科学版),2006,34(9):66-69. 被引量:23
  • 2魏先民.有限状态机在嵌入式软件中的应用[J].潍坊学院学报,2006,6(4):24-25. 被引量:13
  • 3杨晓光 邵俊.关于中国城市公共交通系统智能化问题的研讨[A]..第六届海峡两岸都市交通学术研讨会论文集[C].成都:西南交通大学出版社,1998.. 被引量:2
  • 4Ghassan Jarjees and Chris Drane. Methods for Predicting Bus Travel Times Using a Signpost Positioning System. 5th World congress on Intelligent Transportation System, OCT. 1998. 被引量:1
  • 5T.Kurokawa, K.Ogawa. A Study on Travel Time Prediction Method on Inter-City Expressways Using Traffic Capacity at the Bottleneck. 5th World congress on Intelligent Transportation System, OCT. 1998. 被引量:1
  • 6Lin W, Jian Z. An experimental study on real time bus arrival time prediction with GPS data. In TRB 78th annual meeting (CD-ROM), Washington, D.C. 1999. 被引量:1
  • 7胡伍生,高成发.GPS测量原理及其运用[M].北京:人民交通出版社,2002. 被引量:1
  • 8Stephen Schach. Object-oriented and classical software engineering ( Seventh Edition) [ M ]. New York City : McGraw-Hill, 2008. 被引量:1
  • 9PATNAIK J,CHIEN S. Estimation of bus arrival times using APC data[J].Journal of Public Transportation,2004,(01):1-3. 被引量:1
  • 10JEONG R,RILETT L R. Bus arrival time prediction using artificial neural network model[A].Washington,DC,2004.988-993. 被引量:1

共引文献56

同被引文献28

  • 1胡华,高云峰,刘志钢.基于AVL数据的公交到站时间实时预测模型[J].重庆交通大学学报(自然科学版),2012,31(5):1014-1017. 被引量:14
  • 2李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:893
  • 3江丽炜,韩印,卢伟.智能公交电子站牌显示时间预测方法研究[J].交通与计算机,2006,24(2):31-34. 被引量:8
  • 4Wang B J, Wang W, Yang M, et al. An approach to bus travel time prediction based on the adaptive fading Kalman filter algorithm[ C ]. 12th COTA International Conference of Transportation Professionals ,2012 : 1652 - 1661. 被引量:1
  • 5Shalaby A, Farhan A. Prediction model of bus arrival and departure times using AVL and APC data [ J ]. Journal of Public Transportation,2004,7 ( 1 ) :41 - 61. 被引量:1
  • 6Sun D H, Luo H: Predicting bus arrival time on the basis of global positioning system data[ C]. Transportation Research Board 86th annual meeting, Washington D C, Transportation Research Record,2007:62- 72. 被引量:1
  • 7Chien I J. Dynamic bus arrival time prediction with artificial neural networks [ J ]. Journal of Transportation Engineering,2002, 128(5) :429 -438. 被引量:1
  • 8Lin Y, Yang X, Zou N, et al. Real-time bus arrival time prediction: case study for Jinan, China[ J ]. Journal of Transportation Engineering,2013,139 ( 11 ) : 1133 - 1140. 被引量:1
  • 9Vanajakshi L, Subramanian S C, Sivananda R. Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses[ J]. IET Intelligent Transport Systems ,2009,3 ( 1 ) : 1 - 9. 被引量:1
  • 10Meng Q, Qu x. Bus dwell time estimation at bus bay: A probabilistic approach [ J]. Transportation Research: Part C,2013, (36) :61 -71. 被引量:1

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部