期刊文献+

一种改进的单幅图像快速去雾方法与实验 被引量:4

Fast Defogging Method Based on Single Image
原文传递
导出
摘要 目前,物理模型的单幅图像去雾已成为图像去雾算法研究的重点。在分析了暗原色先验知识的单幅图像去雾算法基础上,针对暗原色先验去雾算法时间复杂度大的缺点,比较了目前已有的暗原色先验改进去雾算法,提出了一种新的暗原色先验单幅图像去雾改进算法。通过引入快速、各向同性的低通高斯滤波器,实现对透射率图的平滑均匀,以代替暗原色去雾方法中精妙但时间复杂度高的软抠图算法;对于图像中图层交界处,提出了以区域中值滤波方法进行修正的算法,以及满足自适应要求的全局大气光求解详细算法。实验结果表明,结合了以上3点改进的快速去雾算法在保证图像去雾效果的同时,能大幅度提高暗原色去雾算法的速度,适用于对工程上的图像、视频实时去雾。 Currently, defogging algorithms based on the physical model of a single image become the focus of defogging researches. Compare several classical single image defogging algorithms, the defogging algorithm based on the dark channel prior knowledge of a single image is the most effective and appropriate method. Since the dark channel prior defogging algorithm has high time complexity and space complexity, there are many researchers accordingly contributed significant improvements to reduce the complexity and improve its efficiency. Comparing these improved algorithms and studying the advantages and disadvantages of defogging, we proposed a new dark channel prior defogging fast algorithm for single image. First, through the introduction of the fast, efficient and low-pass Gaussian filter to substitute the soft matting algorithm or other wave filter, we achieved a smooth and refined transmittance figure. Next, during the process of defogging, since the dark colors in the image at the border of different depth of fields may appear a white border phenomenon, we proposed an area median filtering method to adjust its impact. Finally, the detailed algorithm adaptive to meet the requirements of a global atmospheric optical image were presented. Experimental results showed that the improved algorithm based on single image with the combination of the above mentioned three steps can quickly reduce the fog effect from the original image to ensure the quality of the image, while greatly improve the speed of dark channel prior defogging algorithms. The improved method is efficient in pratical, for example in engineering images defogging process and in video real-time defogging.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第4期494-499,共6页 Journal of Geo-information Science
基金 国家自然科学基金项目(61272351) 福建省教育厅A类项目(JA14312)
关键词 去雾 暗原色先验 大气光 透射率 高斯滤波器 defogging dark channel prior atmospherics transmittance Gaussian filter
  • 相关文献

参考文献20

二级参考文献90

  • 1汪昌成,段成龙,曾小惠.AutoCAD的二次开发技术[J].机械设计与制造,2005(6):59-60. 被引量:9
  • 2周旋,周树道,黄峰,朱福萌,周小滔.卫星图像的去雾研究[J].计算机应用与软件,2005,22(12):54-55. 被引量:3
  • 3Oakley John P, Satherley Brenda L.Improvlng image quality in poor visibility conditions using a physical model for contrast degrsdation [J]. IEEE Transactions on Image Processing, 1998,7(2):167-179. 被引量:1
  • 4Narasimhan Srinivasa G, Nayar Shree K. Removing weather effects from monochrome images [A]. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Reeognition[C], Kauai, Hawaii, USA, 2001,186 -193. 被引量:1
  • 5Kim Tae Keun, Paik Joon Ki, Kang Bong Soon. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering [J]. IEEE Transactions on Consumer Electronics, 1998,44(1): 82-86. 被引量:1
  • 6Kim Joung-Youn, Kim Lee-Sup, Hwang Seung-Ho. An advaneed eontrast enhaneement using partially overlapped subblock histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001,11 (4) :475-484. 被引量:1
  • 7S G Narasimhan,S K Nayar.Contrast restoration of weather degraded images[J].I EEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(6):713-7 2 4. 被引量:1
  • 8Gong Chen,Heqin Zhou,Jiefeng Yan.A novel method for moving object detection i n foggy day[A].Proceedings of the 8th ACIS International Conference on Softwar e Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Com puting[C].Qingdao,China:IEEE Computer Society,2007.53-58. 被引量:1
  • 9J Jone,M Wilscy.Enhancement of weather degraded video sequences using wavelet fusion[A].Proceesings of the 7th IEEE International Conference on Cybernetic I ntelligent System[C].London,UK:IEEE Computer Society,2008.1-6. 被引量:1
  • 10Zhiyuan Xu,Xiaoming Liu,Xiaonan Chen.Fog removal from video sequences using c ontrast limited adaptive histogram equalization[A].Proceedings of Internationa l Conference on Computational Intelligence and Software Engineering[C].Wuhan, China:IEEE Computer Society,2009.1-4. 被引量:1

共引文献261

同被引文献35

  • 1Tarel J P,Hautiere N.Fast Visibility Restoration from a Single Color or Gray Level Image[C]//Proceedings of the12th International Conference on Computer Version.Washington D.C.,USA:IEEE Press,2009:2201-2208. 被引量:1
  • 2Tan R T.Visibility in Bad Weather from a Single Image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1956-1963. 被引量:1
  • 3Fattal R.Single Image Dehazing[J].ACM Transactions on Graphics,2008,27(3):1-9. 被引量:1
  • 4He Kaiming,Sun Jian,Tang Xiaoou.Single Image Haze Removal Using Dark Channel Prior[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2009:1956-1963. 被引量:1
  • 5He Kaiming,Sun Jian,Tang Xiaoou.Guided Image Filtering[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2010:1-14. 被引量:1
  • 6Kim Jin-hwan,Jang Won-dong,Sim Jae-young,et al.Optimized Contrast Enhancement for Real-time Image and Video Dehazing[J].Journal of Visual Com-munication and Image Representation,2013,24(3):410-425. 被引量:1
  • 7Yang Qingxiong,Tan Kar-han,Ahuja N.Real-time O(1)Bilateral Filtering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2009:557-565. 被引量:1
  • 8陈功,王唐,周荷琴.基于物理模型的雾天图像复原新方法[J].中国图象图形学报,2008,13(5):888-893. 被引量:64
  • 9王小明,黄昶,李全彬,刘锦高.改进的多尺度Retinex图像增强算法[J].计算机应用,2010,30(8):2091-2093. 被引量:18
  • 10禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2):143-149. 被引量:104

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部