期刊文献+

Importance of the stem cell microenvironment for ophthalmological cell-based therapy 被引量:5

Importance of the stem cell microenvironment for ophthalmological cell-based therapy
下载PDF
导出
摘要 Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue invitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells(ESCs) and induced pluripotent stem cells(i PS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although i PS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore ho Cell therapy is a promising treatment for diseasesthat are caused by cell degeneration or death. Thecells for clinical transplantation are usually obtainedby culturing healthy allogeneic or exogenous tissue invitro . However, for diseases of the eye, obtaining theadequate number of cells for clinical transplantationis difficult due to the small size of tissue donors andthe frequent needs of long-term amplification ofcells in vitro , which results in low cell viability aftertransplantation. In addition, the transplanted cells oftendevelop fibrosis or degrade and have very low survival.Embryonic stem cells (ESCs) and induced pluripotentstem cells (iPS) are also promising candidates for celltherapy. Unfortunately, the differentiation of ESCs canbring immune rejection, tumorigenicity and undesireddifferentiated cells, limiting its clinical application.Although iPS cells can avoid the risk of immune rejectioncaused by ES cell differentiation post-transplantation,the low conversion rate, the risk of tumor formationand the potentially unpredictable biological changesthat could occur through genetic manipulation hinderits clinical application. Thus, the desired clinical effectof cell therapy is impaired by these factors. Recentresearch findings recognize that the reason for lowsurvival of the implanted cells not only depends on theseeded cells, but also on the cell microenvironment,which determines the cell survival, proliferation andeven reverse differentiation. When used for cell therapy,the transplanted cells need a specific three-dimensionalstructure to anchor and specific extra cellular matrixcomponents in addition to relevant cytokine signalingto transfer the required information to support theirgrowth. These structures present in the matrix inwhich the stem cells reside are known as the stem cellmicroenvironment. The microenvironment interactionwith the stem cells provides the necessary homeostasisfor cell maintenance and growth. A large number ofstudies suggest that to explore how to reconstructthe stem c
出处 《World Journal of Stem Cells》 SCIE CAS 2015年第2期448-460,共13页 世界干细胞杂志(英文版)(电子版)
基金 Supported by National High Technology Research and Development Program(863 Program)of China,No.2012AA020507 Natural Sciences Foundation of China,No.81200659 and 81270971 Guangdong Natural Science Foundation,No.S2012010009113 Fundamental Research Funds of State Key Laboratory of Ophthalmology of China,No.2012PI05
关键词 MICROENVIRONMENT NICHE Stem cell Cellbasedtherapy OCULAR DISEASES OPHTHALMOLOGY Microenvironment Niche Stem cell Cellbased therapy Ocular diseases Ophthalmology
  • 相关文献

参考文献2

二级参考文献6

共引文献33

同被引文献19

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部