期刊文献+

基于后验预测分布的贝叶斯模型评价及其在霍乱传染数据中的应用 被引量:1

Bayesian model checking based on posterior predictive distribution and application to cholera data
下载PDF
导出
摘要 目的:探讨基于后验预测分布的贝叶斯模型评价方法。方法:采用贝叶斯ZIP模型和Possion模型分析霍乱传染数据,通过后验预测分布评价2个模型的拟合优度。结果:如果以数据中0的家庭数为差别检验统计量,则Poisson模型和ZIP模型的后验预测P值分别为0.038和0.503。如果以χ2为差别检验统计量,则Poisson模型和ZIP模型的后验预测P值分为0.005和0.476。结论:ZIP模型对霍乱传染数据拟合良好,而Possion模型拟合不足。 Aim: To explore methods for the Bayesian model checking based on the posterior predictive distribution. Methods: The Bayesian zero-inflated Poisson (ZIP) and Possion models were employed to fit the cholera data, and the posterior predictive distribution was applied for model checking. Results: The posterior predictive P values were respectively 0. 038 and 0. 503 for the Poisson and ZIP models if the proportion of zero in the data was used as the discrepancy test quantity, and they were respectively 0. 005 and 0. 476 for the Poisson and ZIP models if x^2 was used as the discrepancy test quantity. Conclusion : The results suggest that the ZIP model could appropriately handle the presence of too many zeros in the cholera data, but Poisson model fails.
出处 《郑州大学学报(医学版)》 CAS 北大核心 2015年第2期167-171,共5页 Journal of Zhengzhou University(Medical Sciences)
基金 国家自然科学基金项目81402765 国家统计局全国统计科学研究项目2014LY112 江苏省教育厅高校哲学社会科学研究基金项目2013SJD790032 2013SJB790059
关键词 后验预测分布 模型评价 贝叶斯ZIP模型 posterior predictive distribution model checking Bayesian zero-inflated Poisson model
  • 相关文献

参考文献11

二级参考文献29

  • 1[1]Peter Diggle,Patrick Heegerty,Liang KY,et al.Analysis of longitudal data.Second edition.Oxford University press,2001,10-11. 被引量:1
  • 2[2]杨珉,李晓松.医学和公共卫生研究常用多水平统计模型.北京:北京大学医学出版社,2006,118-119. 被引量:1
  • 3[3]Slyman DJ,Ayala GX,Arredondo EM,et al.A demonstration of modeling count data with an application to physical activity.Epidemiologic Perspectives & Innovations,2006,3:1-9. 被引量:1
  • 4[4]Shankar V,Milton J,Mannering F.Modeling accident frequencies as zero-altered probability processes:an empirical inquiry.Aecid.Anal Prey,1997,29(6):829-837. 被引量:1
  • 5[5]Lambert D.Zero-inflated Poisson Regression with an Application to Defects in Manufacturing.Technometrics,1992,34:1-14. 被引量:1
  • 6[6]Long JS.Regression Models for Categorical and Limited DependentVariables.Thousand Oaks:Sage Publications Inc.1997. 被引量:1
  • 7[7]Cameron A,Trivedi P.Regression Analysis of Count Data.Oxford University Press,1998. 被引量:1
  • 8[8]Carrivieka PJW,Lee AH,Yau KKW.Zero-inflated Poiason modeling to evaluate occupational safety interventions.Safety Science,2003,41:53-63. 被引量:1
  • 9[9]Vuong QH.Likelihood ratio tests for modal selection and non-nested hypotheses.Econometrica,1989,57:307-333. 被引量:1
  • 10[10]Miaou SP.The relationship between truck accidents and geomet-ric design of road sections:poisson versus negative binomial regreasion.Accid Anal Prevent,1994,26(4):471-482. 被引量:1

共引文献22

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部