摘要
Age determinations of the Triassic lithostratigraphic units of the Yanshan belt were previously based on plant fossils and regional correlations of lithologies. The Liujiagou and Heshanggou Formations were assigned as the Lower Triassic, and the Ermaying Formation was regarded as the Middle Triassic. We carried out a geochronologic study of detrital zircon grains from the Triassic sandstone in the Xiabancheng and Yingzi basins in northern Hebei where the Triassic strata are exceptionally well preserved. The results show that the Liujiagou, Heshanggou, and Ermaying Formations are all Late Triassic in age. The ages of detrital zircons also revealed that the upper part of the Shihezi Formation and the overlying Sunjiagou Formation, both of which were thought to be the Middle-Late Permian units, are actually late Early to Middle Triassic deposits. This study combines the upper Shihezi and Sunjiagou Formations into a single unit termed as the Yingzi Formation. We also substitute the widely-used Liujiagou, Heshanggou, and Ermaying Formations with the Dingjiagou, Xiabancheng, and Huzhangzi Formations, respectively. Field observations and facies analysis show that the top of the Shihezi Formation is an erosive surface, marking a parallel unconformity between the Middle Permian and Lower Triassic. The Yingzi Formation is composed mainly of meandering river deposits, indicative of tectonic quiescence and low-relief landform in the Early to Middle Triassic. In contrast, the Dingjiagou, Xiabancheng, and Huzhangzi Formations are interpreted as the deposits of sandy/gravelly braided rivers, alluvial fans, fan deltas, and deep lakes in association with volcanism, thus indicating an intense rifting setting. A new Triassic lithostratigraphic division is proposed according to age constraints and facies analysis, and the results are of significance for understanding the early Mesozoic tectonic evolution of the Yanshan belt.
Age determinations of the Triassic lithostratigraphic units of the Yanshan belt were previously based on plant fossils and re- gional correlations of lithologies. The Liujiagou and Heshanggou Formations were assigned as the Lower Triassic, and the Ermaying Formation was regarded as the Middle Triassic. We carried out a geochronologic study of detrital zircon grains from the Triassic sandstone in the Xiabancheng and Yingzi basins in northern Hebei where the Triassic strata are exceptionally well preserved. The results show that the Liujiagou, Heshanggou, and Ermaying Formations are all Late Triassic in age. The ages of detrital zircons also revealed that the upper part of the Shihezi Formation and the overlying Sunjiagou Formation, both of which were thought to be the Middle-Late Permian units, are actually late Early to Middle Triassic deposits. This study combines the upper Shihezi and Sunjiagou Formations into a single unit termed as the Yingzi Formation. We also substitute the widely-used Liujiagou, Heshanggou, and Ermaying Formations with the Dingjiagou, Xiabancheng, and Huzhangzi Formations, respectively. Field observations and facies analysis show that the top of the Shihezi Formation is an erosive surface, marking a parallel unconformity between the Middle Permian and Lower Triassic. The Yingzi Formation is composed mainly of mean- dering river deposits, indicative of tectonic quiescence and low-relief landform in the Early to Middle Triassic. In contrast, the Dingjiagou, Xiabancheng, and Huzhangzi Formations are interpreted as the deposits of sandy/gravelly braided rivers, alluvial fans, fan deltas, and deep lakes in association with volcanism, thus indicating an intense rifting setting. A new Triassic lithostratigraphic division is proposed according to age constraints and facies analysis, and the results are of significance for understanding the early Mesozoic tectonic evolution of the Yanshan belt.
基金
supported by the National Natural Science Foundation of China(Grant Nos.91114204 and 40972151)