期刊文献+

滞后型分段连续随机微分方程的稳定性(英文) 被引量:2

STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENTS OF RETARDED TYPE
下载PDF
导出
摘要 本文研究了滞后型分段连续随机微分方程的解析稳定性和数值稳定性问题.首先,利用伊藤公式等方法获得了解析解均方稳定的条件,其次,对于包括均方稳定和T-稳定在内的Euler-Maruyama方法的数值稳定性问题,运用不等式技术和随机分析方法获得了一些新的结果,证明了在一定条件下,Euler-Maruyama方法既是均方稳定又是T-稳定的,推广了随机延迟微分方程的数值稳定性结论. In this paper,analytical stability and numerical stability are both studied for stochastic differential equations with piecewise constant arguments of retarded type.First,the condition under which the analytical solutions are mean-square stable is obtained by Ito formula.Second,some new results on the numerical stability including the mean-square stability and Tstability of the Euler-Maruyama method are established by using inequality technique and stochastic analysis method.It is proved that the Euler-Maruyama method is both mean-square stable and T-stable under some suitable conditions.Our results can be seen as the generalization of the corresponding exist ones on the numerical stability of stochastic delay differential equations.
作者 王琦 温洁嫦
出处 《数学杂志》 CSCD 北大核心 2015年第2期307-317,共11页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11201084)
关键词 随机延迟微分方程 分段连续项 EULER-MARUYAMA方法 均方稳定性 T-稳定性 stochastic delay differential equations piecewise constant arguments EulerMaruyama method mean-square stability T-stability
  • 相关文献

参考文献23

  • 1Cooke K L,Wiener J.Retarded differential equations with piecewise constant delays[J].J.Math.Anal.Appl.,1984,99(1):265-297. 被引量:1
  • 2Akhmet M U.Almost periodic solutions of differential equations with piecewise constant argument of generalized type[J].Nonlinear Anal.:HS,2008,2(2):456-467. 被引量:1
  • 3Liu M Z,Song M H, Yang Z W.Stability of Runge-Kutta methods in the numerical solution of equation u'(t)=au(t)+ a0u([t])[J].J.Comput.Appl.Math.,2004,166(2):361-370. 被引量:1
  • 4Wang Q,Zhu Q Y,Liu M Z.Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type[J].J.Comput.Appl.Math.,2011,235(5):1542-1552. 被引量:1
  • 5Wiener J.Generalized solutions of functional differential equations[M].Singapore:World Scientific,1993. 被引量:1
  • 6Tudor C,Tudor M.On approximation of solutions for stochastic delay equations[J].Stud.Cere.Mat.,1987,39:265-274. 被引量:1
  • 7Tudor M.Approximation schemes for stochastic equations with hereditary argument[J].Stud.Cere.Mat.,1992,44:73-85. 被引量:1
  • 8Cao W R,Liu M Z,Fan Z C,MS-stability of the Euler-Maruyama method for stochastic differential dalay equations[J].Appl.Math.Comput.,2004,159(1):127-135. 被引量:1
  • 9Buckwar E,Shardlow T.Weak approximation of stochastic differential delay equations[J].IMA J.Numer.Anal.,2005,25(1):57-86. 被引量:1
  • 10Rathinasamy A,Balachandran K.Mean-square stability of semi-implicit Euler method for linear stochastic differential equations with multiple delays and Markovian switching[J].Appl.Math.Com- put.,2008,206(2):968-979. 被引量:1

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部