期刊文献+

快速公交发车间隔优化研究 被引量:7

Study on the Optimization of Departing Time Interval for Bus Rapid Transit
下载PDF
导出
摘要 合理的发车间隔对于快速公交车辆发挥其高效、经济和环保的优势具有重要的意义.首先以乘客出行成本和快速公交运营成本最小化为目标,考虑发车时间约束、车辆台数约束,建立了快速公交发车间隔优化模型.然后采用二进制编码,运用单点交叉和基本位变异的遗传算法求解该优化模型.最后以兰州市首条快速公交线路为例进行了实证研究,得到了不同时段下快速公交的发车间隔.实例研究结果表明,该发车间隔优化模型及遗传算法可行,对实现快速公交科学调度具有一定的参考意义. Scheduling departing time interval is significant for Bus Rapid Transit(BRT)to take full advantage in efficiency,economy and environmental protection.Aimed at minimizing the cost of passenger traveling and BRT operation considering the constraint of departing time interval and BRT number,the multi-objective departing time interval optimization model of BRT is established.Then Genetic Algorithm(GA)with binary coding,one-point crossover and simple mutation are used to solve this model.Finally,the departure interval of BRT under different periods is obtained by taking the first BRT line of Lanzhou as a case study.The results confirmed the feasibility of the optimization model and GA,and it can be used as a reference for BRT scheduling.
出处 《兰州交通大学学报》 CAS 2015年第1期170-174,184,共6页 Journal of Lanzhou Jiaotong University
基金 教育部人文社会科学研究项目(13XJC630017) 甘肃省科技计划资助(1308RJYA030) 甘肃省高等学校科研资助(2014A-044) 兰州交通大学大学生科技创新基金资助(DXS-KJCX-2013-012)
关键词 快速公交 发车间隔 遗传算法 bus rapid transit departing time interval genetic algorithm
  • 相关文献

参考文献12

二级参考文献24

  • 1滕靖,杨晓光.APTS下快速公交实时控制-调度方法研究[J].系统工程理论与实践,2006,26(2):138-143. 被引量:13
  • 2白子建,赵淑芝,田振中.公共交通网络优化的禁忌算法设计与实现[J].吉林大学学报(工学版),2006,36(3):340-344. 被引量:20
  • 3SAKAA A. Model for determing optimum bus-stop spacing in urban areas [ J]. Journal of transportation Engineering, 2001, 127(3) : 195 - 199. 被引量:1
  • 4JASZKIEWICZ A. On the Performance of multiple-objective genetic local search on the 0/1 knapsack problem: A comparative experiment[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4):402 -412. 被引量:1
  • 5ELAOUD S, LOUKIL T, TEGHEM J. The pareto fitness genetic algorithm: Test function study[ J]. European Journal of Operational Research, 2007, 177(3) : 1703 - 1719. 被引量:1
  • 6ISHIBUCHI H, MURATA T A. Multi-objective genetic local search algorithm and its application to flowshop scheduling[ J]. IEEE Transactions on systems man and cybernetics part C: 1998, 28(3): 392 - 403. 被引量:1
  • 7GLOVER F. Tabu search: Part I[ J]. ORSA journal on Computing, 1989(1) : 190 -206. 被引量:1
  • 8GLOVER F. Tabu search II[ J]. ORSA Journal on Computing, 1989 (2) :4 -32. 被引量:1
  • 9[6]Holland J H.Adaptation in Nature and Artificial Systems[M].MIT Press,1992. 被引量:1
  • 10[7]De Jong K A.An Analysis of the Behavior of a Class of Genetic Adaptive[Z].Ph.D Dissertation,University of Michigan,1975. 被引量:1

共引文献12

同被引文献56

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部