期刊文献+

两类运算图的Merrifield-Simmons指标 被引量:1

The Merrifield-Simmons index of two classes of operation graphs
下载PDF
导出
摘要 在图G与不相交图序列hn=(Hi)i={0,1,…,n-1}的广义字典积G[hn]中,若HiH,i=0,1,…,n-1,则将G[hn]记为G[H],其中G[H]是G与H的字典积.通过研究广义字典积P3[Pm]与P3[Cm]的Merrifield-Simmons指标,给出一种计算公式. For the generalized lexicographic product - G[hn ]of a graph G and a sequence of vertex disjoint graphs hn =(Hi )i ={0,1,…,n-1},if Hi  H for i = 0,1,…,n - 1 ,then G[hn ]= G[H],where G[H]is the lexicographic product of two graphs. This essay researches a kind of formula to computer the Merrifield -Simmons index of generalized lexicographic product - P3[Pm ] and generalized lexicographic product- P3[Cm].
出处 《重庆文理学院学报(社会科学版)》 2015年第2期37-39,共3页 Journal of Chongqing University of Arts and Sciences(Social Sciences Edition)
基金 甘肃省社科规划项目(13YD031) 西北民族大学科研创新团队计划资助项目
关键词 广义字典积 Merrifield - Simmons 指标 FIBONACCI Generalized lexicographic product Merrifield - Simmons index Fibonacci number
  • 相关文献

参考文献8

  • 1Merrifield R E, Simmons H E. The structures of mole cular topological spaces [ J ]. Theoretica Chimica Acta, 1980, 55(1): 55-75. 被引量:1
  • 2Merrifield R E, Simmons H E. Topological methods inchemistry[ M]. New York: Wiley, 1989. 被引量:1
  • 3Gutman I. Fragmentation formulas for the number of Kekul: structures, Hosoya and Merrifield - Simmons indices and related graph invariants [ J ]. Coll. Sci. Pap. Fac. Sci. Kragujevac, 1990(11 ) : 11 - 18. 被引量:1
  • 4rrinajstic N. Chemical graph theory [ M ]. Boca Rator, FL: CRC Press, 1992. 被引量:1
  • 5Deng H Y. The smallest Merrifield - Simmons index of (n,n + 1) -graphs [J]. Mathematical and Computer Modeling, 2009, 49(1-2) :320-326. 被引量:1
  • 6Xu K X. On the Hosoya index and the Merrifield - Simmons index of graphs with a given clique number [ J]. Applied Mathematics Letters, 2010, 23 (4) :395 - 398. 被引量:1
  • 7Waldemar S, Iwona W, Andrej W. On the existence and on the number of(k,/) -kernels in the lexico- graphic product of graphs [ J ]. Discrete Mathematics, 2008,308:4616 - 4624. 被引量:1
  • 8Gutman I, Polansky 0 E. Mathematical concepts in organic chemistry[ M ]. Berlin : Springer, 1986. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部