期刊文献+

基于词性组合规则改进的中文句子极性判断方法 被引量:2

IMPROVED CHINESE SENTENCES POLARITY JUDGMENT METHOD BASED ON THE RULES OF POS COMBINATION
下载PDF
导出
摘要 介绍基于词性组合规则改进的中文句子极性判断方法,提出一种基于半监督学习的中文句子极性判断框架。在传统的完全基于情感词典方法的基础上,结合词性组合规则这一重要特征对中文句子进行极性判断。首先,分析中文句子中情感短语、情感词语的词性组合规则。然后,将情感短语、情感词语的词性组合规则用于中文句子极性判断。根据词性组合规则集抽取评测句子中的候选情感短语、情感词语;而后,计算句子的情感信息总量和句子的情感值,根据句子的情感信息总量将句子分为主观句、客观句,根据句子的情感值将主观句子分为积极情感句、消极情感句、中立情感句。实验结果证明,该方法在主客观分类上F值较高,可以达到77.4%;在主观句情感分类上,可达到的F值为62.5%。相比较于已有方法,基于词性组合规则改进的中文句子极性判断方法的F值有了明显的提高。 In this paper we introduce an improved Chinese sentences polarity judgment method which is based on the rules of part of speech( POS) combination and present a semi-supervised learning based Chinese sentence polarity judgment framework. On the basis of traditional approach which is based solely on emotion dictionary,we combine an important feature named the rules of POS combination to make polarity judgment on Chinese sentences. First,we analyse the rules of POS combination of emotional phrases and emotional words.Then,we apply these rules in Chinese sentences polarity judgment. According to the POS combination rules set,we extract the candidate emotional phrase and emotional words in sentences to be evaluated and then calculate the total amount of emotional information in sentences and the emotional value of the sentences. Finally,according to total amount of emotional information in sentences,they will be distinguished as subjective sentences and objective sentences,and according to emotional value of the sentences,the subjective sentences will be divided into positive emotional sentences,negative emotional sentences and neutral emotional sentences. Experimental results show that the F value of this method in subjective and objective classifications is quite high,which can reach up to 77. 4%. In subjective sentence emotion classification,the F value of this method can achieve 62. 5%. Compared with existing methods,the F value of this Chinese sentences polarity judgment method based on the rules of POS combination has significant improvement.
出处 《计算机应用与软件》 CSCD 2015年第3期309-312,330,共5页 Computer Applications and Software
关键词 极性判断 词性组合规则 句子的情感信息总量 句子的情感值 Polarity judgment Rules of part of speech combination Total amount of emotional information in sentence Emotional value of sente
  • 相关文献

参考文献10

二级参考文献82

  • 1张桂宾.相对程度副词与绝对程度副词[J].华东师范大学学报(哲学社会科学版),1997,29(2):92-96. 被引量:78
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:120
  • 4李峰,李芳.中文词语语义相似度计算——基于《知网》2000[J].中文信息学报,2007,21(3):99-105. 被引量:106
  • 5TURNEY P,LITTMAN M.Measuring praise and criticism:inference of semantic orientation from association[J].ACM Trans on Information Systems,2003,21(4):315-346. 被引量:1
  • 6蔡健平,王琳琳,林世平.基于机器学习的词语和句子极性分析[C]//中国人工智能学会第12届全国学术年会论文集:上集.北京:北京邮电大学出版社,2007. 被引量:2
  • 7熊德兰,王爽,张泊平.基于HowNet的句子褒贬倾向性计算[C]//中国人工智能学会第12届全国学术年会论文集:上集.北京:北京邮电大学出版社,2007. 被引量:1
  • 8Hatzivassiloglou V, McKeown K R. Predicting the Semantic Orientation of Adjectives [A]//Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C]. 1997:174-181. 被引量:1
  • 9Peter T, Michael L. Measuring Praise and Criticism: Inference of Semantic Orientation from Association [J]. ACM Transactions on Information Systems, 2003,21 (4) : 315-346. 被引量:1
  • 10Peter D T. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proceeding of the Association for Computational Linguistics 40th Anniversary Meeting. New Brunswick, N. J. , 2002. 被引量:1

共引文献343

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部