期刊文献+

基于SIFT排序的视觉跟踪算法

VISUAL TRACKING ALGORITHM BASED ON RANK SIFT
下载PDF
导出
摘要 针对不稳定的关键点对以SIFT(Scale Invariant Feature Transform)为目标特征的视觉跟踪算法的影响,提出基于SIFT排序的视觉跟踪算法。为实现SIFT排序,提出空域稳定因子和时域稳定因子,并由此构成重要性权重,以表征各个特征点的重要程度。在SIFT排序的基础上,各个关键点按照重要性权重的不同参与跟踪,从而实现基于SIFT排序的视觉跟踪。该算法克服了不稳定的关键点对跟踪结果的影响,从而提高跟踪的准确性和鲁棒性。 Aiming at the impact of unstable key points on visual tracking algorithm which uses SIFT as its target feature,we present the rank SIFT-based visual tracking algorithm. To realise rank SIFT,we propose the spatial stability factor and the temporal stability factor and compose the importance weights with them for representing the significance of each key point. Based on rank SIFT,each key point takes part in tracking according to its own importance weight,so that the rank SIFT-based visual tracking is achieved. The algorithm overcomes the impact of unstable key points on tracking outcomes,therefore improves the accuracy and robustness of tracking.
出处 《计算机应用与软件》 CSCD 2015年第3期253-257,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61203268) 航空科学基金项目(20115896022)
关键词 SIFT 特征排序 关键点 空域稳定因子 时域稳定因子 重要性权重 Scale-invariant feature transform(SIFT) Feature ranking Key point Spatial stability factor Temporal stability factor Importance
  • 相关文献

参考文献10

  • 1Hanxuan Yang,Ling Shao,Feng Zheng.Recent advances and trends invisual tracking:a review[C]//Neurocomputing,2011:3823-3831. 被引量:1
  • 2Samuele Salti,Andrea Cavallaro,Luigi Di Stefano.Adaptive appearance modeling for video tracking:survey and evaluation[J].IEEE Transactions on image processing,2012,21(10):4334-4348. 被引量:1
  • 3David G Lowe.Scale&affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86. 被引量:1
  • 4David G Lowe.Distinctive image features from scale-invariant keypoints[J].International Journal on Computer Vision,2004,60(2):91-110. 被引量:1
  • 5牛长锋,陈登峰,刘玉树.基于SIFT特征和粒子滤波的目标跟踪方法[J].机器人,2010,32(2):241-247. 被引量:20
  • 6Huiyu Zhou,Yuan Yuan,Chunmei Shi.Object tracking using SIFT features and mean shift[C]//Computer Vision and Image Understand,2009:345-352. 被引量:1
  • 7Bing Li,Rong Xiao,Zhiwei Li.Rank-SIFT:Learning to Rank Repeatable Local Interest Points[R].Microsoft Research Asia,2010:851-857. 被引量:1
  • 8Basri R,Jacobs D W.Recognition using region correspondences[J].International Journal of Computer Vision,1997,25(2):45-166. 被引量:1
  • 9Beis J,Lowe D G.Shape indexing using approximate nearest-neighbor search in high dimensional Spaces[C]//Conference on Computer Vision and Pattern Recognition,1997:1000-1006. 被引量:1
  • 10Santner J,Leistner C,Saffari A,et al.PROST Parallel Robust Online Simple Tracking[C]//CVPR,2010:3256-3261. 被引量:1

二级参考文献16

  • 1查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 2Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance adaptive models in particle filters[J]. IEEE Transactions on Image Processing, 2004, 13(11): 1491-1506. 被引量:1
  • 3Wang H Z, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661- 1667. 被引量:1
  • 4Takala V, Pietikainen M. Multi-object tracking using color, texture and motion[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2007: 1-7. 被引量:1
  • 5Li P H, Wang H J. Object tracking with particle filter using color information[M]//Lecture Notes in Computer Science, vol.4418. Berlin, Germany: Springer-Verlag, 2007: 534-541. 被引量:1
  • 6Zhou H Y, Yuan Y, Zhang Y, et al. Non-rigid object tracking in complex scenes[J]. Pattern Recognition Letters, 2009, 30(2): 98-102. 被引量:1
  • 7Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006, 38(4): 45p. 被引量:1
  • 8Rathi Y, Vaswani N, Tannenbaum A, et al. Tracking deforming objects using particle filtering for geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1470-1475. 被引量:1
  • 9Levi K, Weiss Y. Learning object detection from a small number of examples: The importance of good features[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 1153-1160. 被引量:1
  • 10Jepson A D, Fleet D J, El-Maraghi T E Robust online appearance models for visual tracking[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2001: I415-I422. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部