期刊文献+

基于减基法的结构静态极值响应快速计算方法 被引量:2

Rapid computation of structural static extreme response based on reduced basis method
下载PDF
导出
摘要 针对参数化结构系统的响应极值问题,提出了一种适用于快速分析结构静态响应极值的计算方法。该方法在有限元模型基础上,利用减基法原理建立减缩的优化模型,并结合遗传算法快速、准确地获取结构在测点处的静态响应极值,同时,为了更贴近工程应用,在建立优化模型和设计优化步骤时,考虑了求解多测点情况下的最大静态响应极值。算例分析和结果比较,表明该方法在保证响应极值求解精度的同时,具有极大的时效性。 A suitable method based on the reduced basis conception,is proposed for efficiently analyzing and computing the structural static extreme response. In this method, the finite element model is established firstly,and then the reduced basis method and genetic algorithm are used together to construct a reduced optimization model,which could rapidly obtain the structural static extreme response at singleobservation point. To further improve engineering application of this method, the largest extreme displacement response under multi-observation-point situation is taken into consideration in development of the optimization model and procedure. The examples in this paper demonstrate the high accuracy and efficiency of this method.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第1期94-98,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11202076) 吉首大学校级科研(jsdxrcyjkyxm201209)资助项目
关键词 静态响应极值 减基法 遗传算法 有限元 时效性 static extreme response reduced basis method genetic algorithm finite element efficiency
  • 相关文献

参考文献13

二级参考文献31

  • 1LI LuYi,LU ZhenZhou &SONG ShuFang School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China.Saddlepoint approximation based line sampling method for uncertainty propagation in fuzzy and random reliability analysis[J].Science China(Technological Sciences),2010,53(8):2252-2260. 被引量:5
  • 2董玉革,陈心昭,赵显德,权钟完.基于模糊事件概率理论的模糊可靠性分析通用方法[J].计算力学学报,2005,22(3):281-286. 被引量:15
  • 3PRUD'HOMME C,ROVAS D V,VEROY K,et al.Reliable real-time solution of parametrized partial differential equations:reduced-basis output bound methods[J].Journal of Fluids Engineering,2002,124:70-80. VEROY K.Reduced-basis methods applied to problems in elasticity:analysis and applications[D].Cambridge:MIT,2003. 被引量:1
  • 4VEROY K.Reduced-basis methods applied to problems in elasticity:analysis and applications[D].Cambridge:MIT,2003. 被引量:1
  • 5GREPL M A.Reduced-basis approximation and a posteriori error estimation for parabolic partial differential equations[D].Cambridge:MIT,2005. 被引量:1
  • 6NGUYEN N C.A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales[J].Journal of Computational Physics,2008,227:9807-9822. 被引量:1
  • 7SACHDEVA S K,NAIR P B,KEANE A J.On using deterministic FEA software to solve problems in stochastic structural mechanics[J].Computers & Structures,2007,85:277-290. 被引量:1
  • 8MILANI R,QUARTERONI A,ROZZA G.Reduced basis method for linear elasticity problems with many parameters[J].Computer Methods in Applied Mechanics and Engineering,2008,197:4812-4829. 被引量:1
  • 9ZAW K,LIU G R,DENG B,et al.Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network[J].Journal of Biomechanics,2009,42:634-641. 被引量:1
  • 10LIU G R,QUEK S S.Finite element method:a practical course[M].Oxford:Butterworth-Heinemann Press,2003. 被引量:1

共引文献15

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部