期刊文献+

磷酸铁锂电池的SOC预测 被引量:7

Estimation for SOC of LiFePO_4 Li-ion Battery
下载PDF
导出
摘要 电池荷电状态(SOC)准确预测是电池管理系统的关键任务。针对过去电池SOC预测精度低等问题,提出了一种采用极限学习机神经网络(ELM)的预测模型,以电池电压和电流作为模型的输入量,SOC作为输出量。在建模过程中,采用粒子群优化算法(PSO)对ELM随机给定的输入权值矩阵和隐层阈值进行寻优,降低了随机性给模型造成的影响,提高了模型预测精度。利用实验采集的数据进行模型训练和预测,结果表明,用粒子群算法优化后的极限学习机模型(PSOELM)与单纯的ELM以及传统的BP和SVM相比,具有更高的预测精度和泛化性能。为磷酸铁锂电池的SOC预测提供了一种新的方法。 Estimation of SOC of LiFePO4Li-ion battery is one of the key missions for battery management system. For the low accuracy of SOC prediction in the past,an estimation model based on extreme learning machine(ELM) neural network was proposed. In the model,voltage and current were used as input vector and the value of SOC was used as output vector. After the input weight matrix and hidden layer threshold of ELM are optimized by PSO,the effects of its randomness to model were reduced and the prediction accuracy of the model was improved. Using the experimental data collected to train the model and then predict the output,the results show that compared with ELM and BP and SVM neural network,the PSOELM can get higher prediction precision and has more advantages in the generalization performance. Therefore,the new method can be provided for the SOC prediction of LiFePO4Li-ion battery.
出处 《计算机仿真》 CSCD 北大核心 2015年第3期163-168,共6页 Computer Simulation
基金 广西自然科学基金资助项目(桂科自0832075)
关键词 磷酸铁锂电池 荷电状态 极限学习机 粒子群优化算法 预测 LiFePO4 Li-ion battery State of charge(SOC) Extreme learning machine Particle swarm optimization(PSO) Estimation
  • 相关文献

参考文献5

二级参考文献26

  • 1刘有兵,齐铂金,宫学庚.电动汽车动力电池均衡充电的研究[J].电源技术,2004,28(10):649-651. 被引量:33
  • 2陈全世,林拥军,张东民.电动汽车用铅酸电池放电特性的研究[J].汽车技术,1996(8):7-11. 被引量:24
  • 3朱永祥.蓄电池剩余容量在线检测方法研究[J].长沙大学学报,2006,20(5):39-41. 被引量:8
  • 4史久根,张培仁,陈真勇.CAN现场总线系统设计[M].北京:国防工业出版社,2004. 被引量:2
  • 5B.S.Bhangu, P.Bentley, D.A.Stone and C.M.Bingham, Nonlinear Observers for Predicting State-of-charge and State-of-health of Lead-AcidBatteries for Hybrid-Electric Vehicles [J], IEEE Trans on Vehiculer Technology, VOL.54, NO.3.2005. 被引量:1
  • 6Sauradip M., S.K.Sinda and K.Muthukumar, Estimation of State of charge of Lead Acid Battery using Radial Basis Function [J], the 27th Annual conference of the IEEE Industrial Electronics Soci ety, 2001. 被引量:1
  • 7John Chiasson and Basker Variamodan, Estimating the State of eharge a Battery [J], IEEE Trans on control system teehnology.VOL. 13, NO.3, 2005. 被引量:1
  • 8谢成俊.小波分析理论与工程应用[M].长春:东北师范大学出版社,2008. 被引量:2
  • 9Bhatikar S R, Mahajan R L, Wipke K et al. Artificial neural network based energy storage system modeling for hybrid electric vehicle [C]. SAE paper 2000-01-1564, SAE congress, Dtroit, MI(2000). 被引量:1
  • 10Salkind A J, Fennie C, Singh P et al. Reisner. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999, 80: 293-300. 被引量:1

共引文献60

同被引文献59

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部