期刊文献+

基于Hadoop的海运业分布式搜索引擎的应用研究 被引量:3

Application research on distributed search engine for ocean shipping service based on Hadoop
下载PDF
导出
摘要 针对海运业务系统越来越复杂,区域间数据交换日益频繁,致使海运企业无法高效、稳定地使用传统体系处理业务信息的问题,采用Map/Reduce分布式计算模型以及分布式文件系统,设计了一个基于Hadoop的分布式搜索引擎.该搜索引擎能够使海运企业在合理时间内获取、管理、处理业务信息.通过该分布式搜索引擎,可以高效、稳定地满足海运企业日益繁重的庞大的业务需求. Based on the fact that the ocean shipping service is becoming more and more complicated,regional data exchange is becoming more and more frequent,resulting in ocean shipping service being not able to efficiently,steadily by using traditional business information processing system.In the paper,a Hadoop based distributed search engine of ocean shipping service is designed,on the basis of Map/Reduce distributed computing model and distributed file system.The distributed search engine can make the ocean shipping service to obtain,manage and process business information within a reasonable time.Finally,realization of the distributed search engine demonstrates thtat it can efficiently,steadily meet increasingly heavy business needs in ocean shipping service.
出处 《西安工程大学学报》 CAS 2015年第1期73-77,共5页 Journal of Xi’an Polytechnic University
基金 国家科技支援计划资助项目(2006BAF01A44) 中国纺织工业协会科技指导性资助项目(2010076) 陕西省教育厅专项科研计划资助项目(12JK0931 12JK0947) 西安工程大学基础研究资助项目(XGJ07008)
关键词 海运业 HADOOP MAP/REDUCE 分布式文件系统 搜索引擎 ocean shipping Hadoop Map/Reduce distributed file system search engine
  • 相关文献

参考文献7

二级参考文献16

共引文献26

同被引文献16

  • 1LIAO Z, MAO X, HANNAM P M, et al. Adaptation methodology o{ CBR for environmental emergency preparedness system based on an improved genetic algorithmEJ:. Expert Systems with Applications, 2012,39(8) :7029-7040. 被引量:1
  • 2SCHANK, ROGER C. Dynamic memory: A theory of reminding and learning in computers and people[-M:. New York: Cambridge University Press, 1982 : 1-75. 被引量:1
  • 3HANSON J J. Hadoop distributed file systemrEB/OL]. (2012-01-19)F2015L:-25]. http.//www, ibm. com/developer- works/cn/web/wa-introhdfs/. 被引量:1
  • 4ANAND R,JEFFREY D U. Mining of massive datasets[-M]. Cambridge: Cambridge University Press, 2011. 被引量:1
  • 5YANG H, DASDAN A, HSIAO R, et al. Map-reduce-merge: simplified relational data processing on large clusters EC]//Proceedings of the 2007 ACM SIGMOD international conference on Management of data, New York: ACM, 2007 : 1029-1049. 被引量:1
  • 6ZARANDI M H F,RAZAEE Z S,KARBASIAN M. A fuzzy case based reasoning approach to value engineeringEJ]. Expert Systems with Applications, 2011,38 (8) : 9334-9339. 被引量:1
  • 7COVER T, HART P. Nearest neighbor pattern classification[-J-]. IEEE Transactions on Information Theory, 1967,13 (1) :21-27. 被引量:1
  • 8白永超,付伟,辛阳.基于Hadoop和Nutch的分布式搜索引擎研究与仿真[A].中国通信学会.第十九届全国青年通信学术年会论文集[c].中国通信学会.2014:6. 被引量:1
  • 9许瑞丽,徐泽水.区间数相似度研究[J].数学的实践与认识,2007,37(24):1-8. 被引量:26
  • 10王振宇,郭力.基于Hadoop的搜索引擎用户行为分析[J].计算机工程与科学,2011,33(4):115-120. 被引量:21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部