期刊文献+

基于信息熵加权的协同聚类改进算法 被引量:6

Improved collaborative clustering algorithm based on entropy weight
下载PDF
导出
摘要 为了改进协同聚类中计算量较大的问题,提出一种信息熵加权的模糊协同聚类算法。首先引入信息熵来衡量隶属度差异矩阵中包含的不确定性信息,然后根据有效信息量定义相似性距离中的权重,最后通过权重对聚类的贡献实现子集之间的协同聚类。实验结果显示,新算法能充分利用数据子集中蕴涵的相关信息,以较高的计算效率实现更准确的协同聚类。与已有算法相比,新算法能自适应地计算协同关系强度,简化了参数设置和协同函数的复杂计算。 In order to overcome the disadvantage of large amount of calculation in collaborative clustering,this paper proposed an entropy-weighted fuzzy collaborative clustering algorithm. First,it introduced the entropy to measure the uncertain information in the difference matrices of membership degree. Second,it defined the entropy-weighted distance for similarity according to the available information. Last,it offered and implemented the collaborative clustering by means of the contribution of the weighted index. The experimental results show that the improved algorithm can take full advantage of the relevant information among the subsets and achieve more accurate collaborative results with high computational efficiency. Compared with the existing clustering,the improved algorithm can automatically calculate the collaborative relationship strength,so it can simplify the assignment of parameters and the calculation of collaborative function.
机构地区 江南大学理学院
出处 《计算机应用研究》 CSCD 北大核心 2015年第4期1016-1018,1023,共4页 Application Research of Computers
基金 国家自然科学基金青年基金资助项目(61402202) 高等学校博士学科点专项科研基金资助项目(20120093120016) 江苏省自然科学青年基金资助项目(BK20130117)
关键词 模糊聚类 协同关系 差异矩阵 信息熵 权重系数 fuzzy clustering collaborative relationship difference matrix information entropy weight coefficient
  • 相关文献

参考文献14

  • 1ZADEH L A. Fuzzzy sets[J]. Information and Control, 1965, 8 (3) : 338-353. 被引量:1
  • 2BEZDEK J C. Pattern recognition with fuzzy objective function algo- rithms[ M ]. New York : Plenum Press, 1981. 被引量:1
  • 3GONG Mao-guo, LIANG Yan, SHI Jiao, et al. Fuzzy C-means clus- tering with local information and kernel metric for image segmentation [J]. IEEE Trans on Image Processing, 2013, 22(2) : 573-584. 被引量:1
  • 4崔兆华,高立群,马红宾,李洪军.融合万有引力和局部熵的FCM算法[J].计算机应用研究,2013,30(12):3828-3830. 被引量:2
  • 5高翠芳..模糊聚类新算法及应用研究[D].江南大学,2011:
  • 6陈加顺,皮德常.改进的基于二次型模糊c均值聚类模型[J].系统工程与电子技术,2013,35(7):1547-1553. 被引量:4
  • 7PEDRYCZ W, RAI P. Collaborative fuzzy clustering with the use of fuzzy C-means and its quantification [ J ]. Fuzzy Sets and Sys- tems, 2008, 159(18): 2399-2427. 被引量:1
  • 8COLETTA S, VENDRAMIN L, HRUSCHKA E R, et al. Collaborative fuzzy clustering algorithms: some refinements and design guidelines [J]. IEEE Trans on Fuzzy Systems, 2012, 20(3) : 444-462. 被引量:1
  • 9GAO Cui-fang, WU Xiao-jun, YU P. An algorithm of fuzzy collabora- tive clustering based on kernel competitive agglomeration [ J ]. Jour- nal of Computers, 2013, 8(10) : 2623-2631. 被引量:1
  • 10COLETTA L F S, VENDRAMIN L, HRUSCHKA E R, et al. Collab- orative fuzzy clustering algorithms: some refinements and design guidelines[J]. IEEE rrans on Fuzzy Systems, 2012, 20 (3): 444 - 462. 被引量:1

二级参考文献66

  • 1陈孝新.熵权法在股票市场的应用[J].商业研究,2004(16):139-140. 被引量:9
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3汪加才,朱艺华.模糊K-Prototypes算法中的加权指数研究[J].计算机应用,2005,25(2):348-351. 被引量:4
  • 4张兴华.模糊聚类分析的新算法[J].数学的实践与认识,2005,35(3):138-141. 被引量:11
  • 5Kohonen T. The self-organizing map[J]. IEEE, 1990,78(9) : 1464- 1480. 被引量:1
  • 6Wang Wei, Yang jiong, Muntz R. STING:A statistical information grid approach to spatial data mining[C]// Proc. of the 23rd International Conference on very Large Data Bases,1997. 被引量:1
  • 7Agrawal R, Gehrke J, Gunopulcs D. Automatic subspace clustering of high dimensional data for data mining applieation[C]// Proc. of ACM SIGMOD Intconfon Management on Data, Seattle, WA, 1998:94-205. 被引量:1
  • 8Guha S, Rastogi R, Shim K. Cure:An efficient clustering algorithm for large database[C]// Proc. of ACM-SIGMOND Int. Conf, Management on Data, Seattle, Washington, 1998 : 73- 84. 被引量:1
  • 9Hassan H E. Joint deinterleaving recognition of radar pulses[C]// Proc. of the International Radar Conference, 2003 : 177- 181. 被引量:1
  • 10Guo Q J, Yue G X, Zhang J Y. Flow pattern transition in a large jetting fluidized bed with a vertical nozzle[J]. Industrial and Engineering Chemistry Research, 2001,40(9): 3689-3696. 被引量:1

共引文献35

同被引文献51

  • 1毛韶阳,李肯立.K-means初始聚类中心优化算法研究[J].重庆邮电大学学报(自然科学版),2007,19(4):422-425. 被引量:6
  • 2Pedrycz W.Collaborative fuzzy clustering[J].Pattern RecognitionLetters,2002,23(14):1675-1686. 被引量:1
  • 3边肇祺,张学工.模式识别[M].北京:清华大学出版社,2010. 被引量:1
  • 4Bezdek J C.Pattern recognition with fuzzy objective functionalgorithms[M].New York:Plenum Press,1981. 被引量:1
  • 5Jain A.Data clustering:50 years beyond k-means[J].PatternRecognition Letters,2010,31(8):651-666. 被引量:1
  • 6Pedrycz W,Rai P.Collaborative clustering with the useof Fuzzy C-Means and its quantification[J].Fuzzy Setsand Systems,2008,159(18):2399-2427. 被引量:1
  • 7Colletta L F S,Vendramin L.Collaborative fuzzy clusteringalgorithms:Some refinements and design guidelines[J].IEEE Transactions on Fuzzy Systems,2012,20(3):444-462. 被引量:1
  • 8王晓,于福生,张慧欣.优化协作系数下横向协作聚类的实现[C].中国控制与决策会议论文集,2012:3798-3802. 被引量:1
  • 9Zadeh L A.Fuzzy sets[J].Information and Contral,1965,8(3):338-353. 被引量:1
  • 10Paterlini S,Krink T.Differential evolution and particleswarm optimization in patitional clustering[J].ComputationalStatistics and Data Anlysis,2006,50(5):1220-1247. 被引量:1

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部